
Making crosswords with Qxw
Mark Owen

qxw@quinapalus.com
http://www.quinapalus.com/qxw.html

Notes on Windows version by Peter Flippant

This guide describes releases 20190722 to 20200708 inclusive of Qxw. Significant differences
from releases 20140131 and 20140331 are marked by a bar in the margin, as here.

July 8, 2020

http://www.quinapalus.com/qxw.html


2

Copyright c© 2013–2020 Mark Owen and Peter Flippant.



Contents

I Examples 7

1 A simple blocked grid 8
1.1 Automatic fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 A more advanced blocked grid 11
2.1 Guided fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Configuring interactive assistance . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 More advanced editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Saving and exporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Barred grids and entry methods 16
3.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adding bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Reversals, cyclic permutations and jumbles . . . . . . . . . . . . . . . . . . . . . . 18

4 Grid shapes and topologies 19
4.1 Cutouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Circular grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Hexagonal grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 The Isle of Wight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Grid topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Multiplex lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Grids with secrets 27
5.1 ‘Letters Latent’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Hidden words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Hidden quotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 ‘Cherchez la femme’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 ‘Eightsome reels’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 Creating the grid manually . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.2 Creating the free lights automatically . . . . . . . . . . . . . . . . . . . . . 36

3



4 CONTENTS

5.6 ‘Alphabetical jigsaw’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Discretion 39

7 Creating a customised answer treatment 41
7.1 Compiling a simple plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Combining plug-ins and discretion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Puzzles using digits, accents and non-Roman characters 46
8.1 Numerical puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Accents and non-Roman characters . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3 Answer treatments using non-Roman alphabets . . . . . . . . . . . . . . . . . . . 48

II Reference 50

9 Dictionaries and alphabets 51
9.1 Using multiple dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.2 Customising the dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.3 Single-entry dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.4 Making dictionaries using external tools . . . . . . . . . . . . . . . . . . . . . . . . 53
9.5 Dictionary file encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.6 Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.7 Custom alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.7.1 Two-character expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.7.2 Further remarks on alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.8 Diagnosing problems with dictionaries and alphabets . . . . . . . . . . . . . . . . 57
9.9 Character classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 Preferences and statistics 59
10.1 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11 Selecting cells and lights 62
11.1 Selecting cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
11.2 Selecting lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.3 Switching selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

12 Cell and light properties and cell contents 64
12.1 Cell properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
12.2 Light properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.3 Cell contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS 5

13 Free lights 68
13.1 Making free lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.2 Selecting and editing free lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14 Answer treatments 70
14.1 Built-in answer treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

14.1.1 Playfair cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
14.1.2 Substitution cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
14.1.3 Fixed Caesar/Vigenère cipher . . . . . . . . . . . . . . . . . . . . . . . . . 71
14.1.4 Variable Caesar cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
14.1.5 Misprint (correct letters specified) . . . . . . . . . . . . . . . . . . . . . . . 71
14.1.6 Misprint (incorrect letters specified) . . . . . . . . . . . . . . . . . . . . . . 72
14.1.7 Misprint (general, clue order) . . . . . . . . . . . . . . . . . . . . . . . . . . 72
14.1.8 Delete single occurrence of character (clue order) . . . . . . . . . . . . . . 72
14.1.9 Letters latent: delete all occurrences of character (clue order) . . . . . . . . 72
14.1.10 Insert single character (clue order) . . . . . . . . . . . . . . . . . . . . . . . 73

14.2 Filler discretionary modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
14.3 Plug-in answer treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

14.3.1 Writing a plug-in for a non-Roman alphabet . . . . . . . . . . . . . . . . . 75
14.3.2 Treatment messages when using a non-Roman alphabet . . . . . . . . . . 76
14.3.3 Writing a plug-in to work with discretionary fill modes . . . . . . . . . . . 77

14.4 Compiling plug-ins under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 78
14.4.1 Using Microsoft Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . 78
14.4.2 Debugging a plug-in under Microsoft Visual Studio . . . . . . . . . . . . . 79

15 Decks 80
15.1 Introduction to decks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
15.2 Entries and words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

15.2.1 Initialising entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
15.3 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

15.3.1 Global directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
15.3.2 Local directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
15.3.3 Blocks and scope rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

16 Keyboard and mouse command summary 87
16.1 Keyboard commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
16.2 Mouse commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Index 90



Introduction

Qxw is a program to help you design and publish crosswords, from the simplest blocked grid to
the most sophisticated thematic puzzle. It can make rectangular-, hexagonal- or circular-format
grids with blocks, bars or both. It has an automatic grid-filling feature that can handle a wide
range of answer treatments—you can even add your own answer treatment methods. Grids can
be filled using letters, digits, symbols or a mixture of all three and a wide range of languages is
supported.
Qxw produces output in a form ready for professional publication.
Qxw can also be used as a command-line tool to help automate the construction and filling of
even more sophisticated grids, using a feature called ‘decks’.
This guide is in two parts: the first part gives various informal examples of what you can do
with Qxw and how you do it, while the second part is a more comprehensive and structured
description of the facilities available.
Licence: Qxw is free software, licensed under version 2 of the GPL (GNU General Public Li-
cense). There are currently two versions of Qxw. One runs under the Linux operating system,
and is tested on version 18.04 of the Xubuntu distribution: a Debian package is available. The
other runs under the Windows operating system, from Windows 7 onwards. Some of the exam-
ples in this guide, particularly those involving the creation of customised answer treatments, are
based on the Linux version. Differences affecting Windows users are discussed in Section 14.4.
Acknowledgements: Thanks to everyone who provided comments and bug reports on earlier
versions of the program and its documentation, in particular to Nick Warne for extensive testing
and assistance with troubleshooting. Please report any bugs you find to the address on the
front page of this manual. Thanks also to Guido Bartoli, Janusz S. Bień, Adi Botea, Richard
Brooksby, Csapai Andrea, Shirley Curran, Artti from Estonia, Matjaž Hladnik, Štefan Hozjan,
Paul McKenna, Chris Montgomery, Jostein Sand Nilsen, Gareth Rees and Neil Shepherd for
their assistance in implementing support for various languages in Qxw. Of course none of
these bear any responsibility for any remaining infelicities in the program.
Offers of further assistance with improving and extending Qxw’s built-in support for languages
other than English are welcomed.
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Examples
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Chapter 1

A simple blocked grid

Figure: 1.1: How Qxw appears when it starts

The first thing to do when constructing a crossword with Qxw is to tell it the type and size of the
grid you want. (You can change these later if necessary.) Select the menu item Properties-Grid
properties. In the dialogue that appears, set the grid size to 7 columns by 5 rows. Leave the grid
type as ‘Plain rectangular’; you can fill in a title and author name if you wish. The dialogue
should now appear as shown in Figure 1.2. Click on ‘Apply’ and the grid size will change as
requested.
The grey triangle in the top left-hand corner of the grid is the cursor. You can move it using the
arrow keys on the keyboard or by left-clicking in the middle of a grid cell with the mouse.
You can change the direction in which the cursor points using the ‘Page Up’ and ‘Page Down’
keys or the ‘slash’ (‘/’) key or, using the mouse, by clicking on top of the cursor. You can
move it forward in the current direction by pressing the spacebar and backwards by pressing
‘Backspace’ (sometimes labelled with a left-pointing arrow).
You can now start to add blocks to the grid. Move the cursor down one cell and to the right one
cell. Now press the ‘Insert’ key (labelled ‘Ins’ on some keyboards) or the ‘comma’ (‘,’) key and
a black block should appear under the cursor. There is a menu item Edit-Solid block that does

8
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Figure: 1.2: The Grid properties dialogue

the same thing as pressing ‘Insert’. You can also arrange things so that clicking the mouse in the
corner of a cell creates or destroys a block there: see Section 10.1.
You will see that another block has also appeared in the grid, diagonally opposite the one you
created. Qxw will try to maintain the symmetry of the grid as you construct it.
Continue adding blocks to the grid until it looks like Figure 1.3. If you make a mistake you can
delete a block using the ‘Delete’ key (sometimes ‘Del’) or the ‘full stop’ (‘.’) key. There is again
a corresponding menu item Edit-Empty.
Both ‘Insert’ and ‘Delete’ automatically advance the cursor.
You can also use Edit-Undo (‘control-Z’) to correct mistakes and Edit-Redo (‘control-Y’) to re-
peat mistakes when you realise they weren’t mistakes after all.

Figure: 1.3: A simple blocked grid

You can now proceed to fill the grid with words. Qxw can help with this process to various
degrees, from suggesting individual letters and words to fully automated filling.



10 CHAPTER 1. A SIMPLE BLOCKED GRID

1.1 Automatic fill

When Qxw starts it will look for a suitable dictionary in one of the standard places on your
computer. You will need a dictionary to use Qxw’s automatic filling features: see Chapter 9 for
more information.
For a completely automatic fill, select the menu item Autofill-Autofill (or press ‘control-G’).
Assuming that Qxw managed to find a suitable dictionary when it started up, it will fill the
grid with words. At this point the words are only Qxw’s suggestions, and so are shown in grey.
Select the menu item Autofill-Accept hints (or ‘control-A’) to accept these suggestions, turning
the letters black: see Figure 1.4. The results you get with automatic filling depend on many
factors, most significantly on the dictionary you are using. Your filled grid is therefore unlikely
to be identical to the one shown: this applies to all the examples in this guide.

Figure: 1.4: An automatic fill of the simple blocked grid

Congratulations! You have just made your first crossword using Qxw.



Chapter 2

A more advanced blocked grid

In this chapter we will see how to construct a 15-by-15 blocked grid (a size used by many
newspapers). We also have a few words that we want to include in the puzzle.
Begin by selecting the menu item File-New-Blocked 15x15 template-No unches on edges. This
will provide you with a convenient starting point for creating the grid shown in Figure 2.1.
Other sub-menus under File-New provide a range of useful starting points for various kinds
of puzzle. You may want to make the window bigger to avoid scrolling if the grid doesn’t fit;
also, you can move the dividing bar between the grid and the panel to the right to make more
space. The display zoom factor can be adjusted using the buttons in the bottom left-hand corner
of Qxw’s window or the menu item Edit-Zoom; as usual, there are keyboard equivalents and
on many machines, you can hold down the control key while moving the scroll wheel on the
mouse. Without the control key held down, you can also use the mouse wheel to scroll around
the grid if it is too large to fit in its window.
Use the cursor keys and the ‘Insert’ or ‘comma’ keys as before to create the blocked diagram as
shown.
You can save your work using the File-Save As menu item: you need to choose a filename for it,
which should normally end ‘.qxw’, although this isn’t compulsory. Once you have established
a filename you can subsequently use File-Save. Use File-Open to load a saved crossword back
at a later date.
You can fill the grid manually by simply typing letters. As you type the cursor automatically
advances in the current direction. You can delete the letter under the cursor using the ‘Delete’
or ‘full stop’ keys, or you can use ‘Tab’. Unlike ‘Delete’, ‘Tab’ will not delete blocks. ‘Shift-Tab’
operates as ‘Tab’, but moves backwards rather than forwards.
Enter the thematic words for this crossword as shown in Figure 2.2.
At this point we could use the automatic filling feature to complete the grid; however, we will
continue this example in a more interactive way to demonstrate how Qxw can gently guide you
in choosing suitable words.

2.1 Guided fill

You may have noticed as you constructed the grid that the feasible character list at the bottom of
Qxw’s window and the list of words in the right-hand panel were continuously being updated.
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12 CHAPTER 2. A MORE ADVANCED BLOCKED GRID

Figure: 2.1: Blocked grid

The feasible character list shows what characters can be used to fill the cell under the cursor (the
‘current cell’), in order from most promising to least promising. The right-hand panel shows
the words that can be used to fill the grid entry that runs through the cursor in the direction in
which it points: this grid entry is called the ‘current light’.
Also, you will see small red dots start to appear in the diagram. These are ‘hotspots’, where
there are relatively few feasible letters. The bigger the red dot, the fewer possibilities there are in
that cell. Qxw takes into account the possible combinations of crossing words when computing
which letters are feasible in each cell—it uses a small amount of ‘look-ahead’—and so can often
see situations where a fill will be difficult or impossible before they become apparent to the user.
See Section 2.1.1 for how you can configure this behaviour.
If only a single possibility remains for a cell, the forced letter will be shown in grey. To see
this effect, try deleting any one of the letters of ‘MISTLETOE’: unless you are using a very odd
dictionary Qxw will supply the missing letter. Using the menu item Autofill-Accept hints (or
‘control-A’) you can make any letters shown in grey in the grid into a permanent part of the
crossword as if you had typed them in.
When no possibilities remain to fill a cell, a grey question mark is displayed. Qxw looks ahead
far enough that grey question marks will propagate over the entire grid when a fill becomes
impossible.
In the grid shown in Figure 2.2 the red dots tell us that the third down light (the nine-letter
word starting with ‘Y’) is likely to be the most constrained. Move the cursor over to that light
and press ‘Page Up’ or ‘Page Down’ or ‘slash’ until it points in the Down direction. On the right
you will see a list of feasible words: see Figure 2.3.
You can choose one of these words by clicking on it. The word will be entered as the current
light, and the rest of the grid will update to show you where the new hotspots are. If you are
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Figure: 2.2: Blocked grid with theme words added

unlucky, the remainder of the grid will turn to question marks. This means that there is no pos-
sible fill; delete the entry and try again. At this point you may find the Edit-Undo (‘control-Z’)
and Edit-Redo (‘control-Y’) commands useful to save a lot of tedious deleting and re-entering
of lights.
At any point you can right-click on a word in the feasible word list, which will offer you a range
of options. You can look up the word using an on-line dictionary, encyclopaedia or search
engine; you can copy it to the clipboard; or you can ‘ban’ it, which means that it will not be
considered subsequently when filling the grid. All words can be unbanned using the menu
option Autofill-Unban all answers.
In this way you can complete the process of filling the grid manually, with just a little assistance
from Qxw. You don’t need to enter whole words at a time if you don’t want to: you can always
type individual letters wherever you like in the grid. You also always have the option to use the
automatic filling feature to complete the grid at any point.
If at any time you decide that you want to erase all filled entries and start again, use the Edit-
Clear all cells (‘control-X’) command.

2.1.1 Configuring interactive assistance

It is possible to reduce the amount of automatic assistance Qxw offers you while constructing
a grid: this can be useful to avoid distraction at an early stage of trying out grid ideas. It
also slightly reduces the amount of processing power Qxw uses, which will in turn lead to
a marginal improvement in battery life on portable machines. Use the menu item Autofill-
Interactive assistance-Off to disable assistance altogether; use Autofill-Interactive assistance-
Light only to arrange for Qxw to consider only the current light when building the feasible
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Figure: 2.3: Using the feasible word list

word list, ignoring the constraints implied by any checking lights and thence the rest of the
grid; and use Autofill-Interactive assistance-Entire grid to force Qxw to go as far as it can in
determining which characters and lights are feasible without embarking on a search that might
entail backtracking. This last setting is the default when Qxw starts.

2.2 More advanced editing

The Edit menu includes several more powerful functions for modifying a grid. You can insert
and delete rows and columns, flip the grid in the main diagonal, and rotate circular grids (see
Section 4.2). For circular grids the row and column editing functions operate on annuli and
radii respectively.

2.3 Saving and exporting

You should of course save your work regularly. (Qxw does not make automatic backups.) Sav-
ing a crossword in Qxw’s native format saves the grid contents and size, the title and author,
and the names of the dictionary files. It does not make a copy of the dictionaries themselves.
The banishment status of words is not saved.
When you have completed your grid you will want to save it in a form suitable for publication
in print or on the Internet: this is called ‘exporting’. Qxw can export your puzzle in various
ways in a range of file formats. The export options are listed under the File menu.
You can export the blank grid image (i.e., without answers) or the filled grid image (i.e., with
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answers) in EPS, SVG, HTML or PNG formats. EPS (‘Encapsulated PostScript’) is a format for
drawings widely used in professional publishing; SVG (‘Scalable Vector Graphics’) is an XML-
based format for drawings also suitable for professional publishing applications; the HTML
format makes your crossword into a web page using CSS (‘cascading style sheets’) to render
the grid; and PNG is a bit-mapped graphics format also suitable for use on the Internet. Most
modern browsers, including versions 9 and above of Internet Explorer, also support the SVG
format directly. The EPS, SVG and HTML formats can be scaled up arbitrarily after export
without loss of image quality; PNG format images look blocky when scaled up. Qxw cannot
export non-rectangular grids in HTML format.
You can also export just the text of the answers either in simple HTML or in plain text: this
output can be used as a skeleton for writing clues using your favourite word processor or HTML
editor.
The puzzle as a whole or the solution can be output either as pure HTML (rectangular grids
only) or as a combination of HTML with a PNG or SVG image to represent the grid. You can
use an HTML editor to add clues, solution notes, or any other text.
When the text of the answers is included in an exported file, all possibilities are listed. If you
have not completely filled the grid then the resulting files can be quite large and, especially if
you are using some of Qxw’s more advanced features, can take a long time to generate.
Qxw includes an experimental feature under File-Export other format to generate XML output
intended to be compatible with Crossword Compiler. Since there are significant differences
between the types of puzzle supported by Qxw and by Crossword Compiler, there can be no
guarantees of compatibility, especially if your grid uses some of Qxw’s more exotic features.
The main limitations are that only rectangular grids are supported; only one character per cell
is supported; merged cells, grid topologies, answer treatments, multiplex lights and free lights
are not supported; and general corner marks are not supported, although circles around letters
are.
Qxw will also attempt to read SYM and SYT format files: you can just open them in the normal
way using File-Open. Again, compatibility is limited; and furthermore, since these file formats
are not properly documented, there can be no guarantee that this function will work at all.
Warning: Qxw cannot recover a crossword from its exported form. You must save your work
using the File-Save As or File-Save menu options.



Chapter 3

Barred grids and entry methods

Now we will look at how to create a barred grid in Qxw. Barred grids are popular for advanced
crosswords that use more obscure vocabulary; this makes the choice of dictionary more crit-
ical, and it is a good idea to read Chapter 9 before embarking on the construction of such a
crossword.
Qxw does not particularly distinguish between barred and blocked grids: you can even mix
bars and blocks within a grid if you like. So we start in the same way as before, using the
Properties-Grid properties menu item to set the overall size. For this example we will use a
12-by-12 grid, which is popular for this type of crossword.

            

            

            

            

            

            

            

            

            

            

            

            

Figure: 3.1: Simple barred grid
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3.1 Symmetry

The previous example grids we looked at had twofold (i.e., 180-degree) rotational symmetry
automatically provided by Qxw. This is the default, but you can change it: here we will insist
on fourfold (i.e., 90-degree) rotational symmetry. To do this, select the menu item Symmetry-
Fourfold rotational. As you can see from the menu, Qxw offers a wide range of other symmetry
types, including mirror symmetries and ‘up-down’ and ‘left-right’ symmetries, in which the bar
or block pattern in one half of the grid matches that in the other. The various types of symmetry
may be combined at will.
The menu option Symmetry-None gives you a quick way to clear all the symmetry settings.
If you change the symmetry setting in the middle of grid construction, any subsequent opera-
tions will respect the new setting, but the pattern will not otherwise change.

3.2 Adding bars

With the symmetry specified, you can proceed to add bars to the grid. Place the cursor after the
point where you wish to insert a bar, pointing away from the bar position, and press ‘Return’.
Alternatively, use the Edit-Bar before menu item. Repeat the operation to remove the bar.
You can also arrange things so that clicking the mouse on the edge of a cell creates or destroys
a bar there: see Section 10.1.
Add bars to the grid until it appears as in Figure 3.1.
The grid can now be filled manually or automatically as before. The result might look like
Figure 3.2.

O B S E S S I V E E C F

B R U N E L L E S C H I

B O V I N E K S C L A N

S T A I D E S T A A R I
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N O G M P L O T T E R S

I O W A O I P E R M I T

E D I T O R I A L I Z E

R S G A N E C D O T E S

Figure: 3.2: Simple barred grid with example automatic fill
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3.3 Reversals, cyclic permutations and jumbles

Qxw will let you create grids with words entered forwards or backwards, or permuted in var-
ious ways. For example, start with a blank nineteen-by-nineteen grid, and select the menu
item Properties-Default light properties) and then tick all the boxes ‘Allow light to be entered
normally’, ‘Allow light to be entered reversed’, ‘Allow light to be entered cyclically permuted’,
‘Allow light to be entered cyclically permuted and reversed’ and ‘Allow light to be entered with
any other permutation’. An automatic fill of this grid (which may take some time to generate)
might look like Figure 3.3.
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V G E R N T I L I C O O E G N E E R A

E V N A I R G O T E T P C R A E S I N

R E T P N E O R M I E N M A C E O S T

A L N E A E I E N S T R P T F O R E S

N I G A P E R R T A N A K O L I A C L

O A R S R L E A G I N E T S O V I N E

P R D O H C T Y E O C C R I H A E L S

S N I E D O A C E V I T I N I T O F R

A N T H O N I G R O O D T I S E I T P

Figure: 3.3: Grid filled with jumbled words

You can see the lights in unjumbled form by moving the cursor around the grid and looking
in the feasible word list. (They are: remisrepresentation; cruel disappointment; antiferromag-
netisms; inverse relationship; acoustoelectrically (or electroacoustically); sinfonia concertante;
controlling interest; Netherlands Antilles; take as a precondition; comparative relation; regen-
erative cooling; prerogative instance; Remontoir escapement; false representation; Glacier Na-
tional Park; overgeneralisations; scorched earth policy; overidentifications; photodisintegra-
tion; nonappreciativeness; ventilation engineer; come to a grinding halt; operational research;
non-medical therapist; consecrated elements; tracer investigation; rontgenographically; elec-
tromagnetic tape; overspecialisations; restriction of intake; positive declaration; Kidderminster
carpet; interorganisational; thermonuclear fusion; overrepresentations; interprofessionally; cen-
tre of oscillation; and representationalism.)



Chapter 4

Grid shapes and topologies

Qxw lets you create grids in a variety of shapes beyond the conventional rectangle or square.

4.1 Cutouts

The simplest way to customise the shape of the grid is to use cutouts. You start with a conven-
tional rectangular grid and remove unwanted cells. An unwanted cell is removed by placing
the cursor on it and pressing ‘control-C’ (or selecting the menu item Edit-Cutout ). The removed
cell is shown shaded on the screen and is not shown in exported versions of the grid. To return
a cell to the grid, press ‘Delete’ or ‘full stop’ (to turn it into an empty cell) or ‘Insert’ or ‘comma’
(to turn it into a block). Figure 4.1 shows a simple example of custom grid shape created in this
way.
Like ‘Insert’ and ‘Delete’, creating a cutout automatically advances the cursor.

S H I P E D A M

S C O R E S S L I C E D

L A U R E L C A S T R O

I R R E L E V A N C I E S

M A L T E D M O R O S E

B Y R D R E N T

I T

F L E D G I S T

T R A V I S B A O T O U

A U D A C I O U S N E S S

T I D B I T S P A R S E

S T I L E S T E R N E D

S E E R D Y E D

Figure: 4.1: Custom grid shape created using cutouts
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4.2 Circular grids

Qxw can create crosswords with circular grids. First select the menu item Properties-Grid prop-
erties. In the dialogue that appears set the grid type to ‘Circular’ and the size to 20 radii and
8 annuli. The resulting grid template appears as shown in Figure 4.2.

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 
 

 

  
 

 

 

 

 
 

    
 

 

 

 

 
 

  

  
 

 

 

 

 
 

    
 

 

 

 

 
 

  

  
 
 
 
 

 
    

 

 
 
 
 

  

Figure: 4.2: Circular grid template

You can move the cursor using the arrow keys: the left and right arrow keys move the cursor
forwards and backwards within an annulus, while the up and down arrow keys move the
cursor radially away from and towards the centre. The ‘Page Up’, ‘Page Down’ and ‘slash’ keys
change the direction of the cursor as before.
Although Qxw will happily let you fill them, the cells near the centre of the grid are too small to
fit a letter in comfortably. There are two approaches to solving this problem, which can be used
in combination.
First, you can use cutouts to remove the centre cells from the grid as described above. (The job
can be made a bit quicker by temporarily increasing the rotational symmetry setting—note that
with 20 radii Qxw offers you, for example, the possibility of fivefold rotational symmetry.) The
result might look like Figure 4.3.

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 
 

 

Figure: 4.3: Circular grid with central cutouts
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Second, Qxw gives you the option to merge two or more cells into one by deleting the grid line
that divides them. With the cursor pointing at the grid line to be deleted, press ‘control-M’ (or
select the menu item Edit-Merge with next). The grid line ahead of the cursor will disappear:
two cells have been merged into one. The operation respects the settings selected under the
Symmetry menu. An example of the kind of grid you can create using merged cells is shown in
Figure 4.4.

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

    
 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

  
 

 
 

 

 

 

 

 

 

 

 

 
 

 
    

 
 

 

 

 

 

 

 

 

 

 

 
 

 
  

  
 

 
 

 

 

 

 

 

 

 

 
 

 
 

    
 

 
 

 

 

 

 

 

 

 

 
 

 
 

  

  
  

  

  

  

  

  

  
    

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  
    

  

  

  

  

  

  

  
    

    

    

    
    

    

    

    

    

Figure: 4.4: Circular grid with cutouts and merged cells

When filling the grid, a set of merged cells is filled just as if they were a single cell.
Pressing ‘control-M’ within a merged cell with no grid line immediately ahead of the cursor will
restore that grid line, undoing (although only partially if more than two cells have been merged
into one) the merge operation.
All the sub-cells comprising a merged group must lie in a line in one direction; in other words,
for a circular grid, they must lie consecutively within one annulus or radius. Qxw will enforce
this restriction by demerging cells as necessary.
Figure 4.5 shows an example of a more complex circular grid, with bars added to create lights
within the annuli. (If there are no bars within a given annulus, Qxw treats it as if all the letters in
that annulus are unchecked. To obtain the effect of a single light occupying the whole annulus,
add a bar: the innermost annulus in the figure illustrates this.)
It is common in circular grids for words to be entered either forwards or backwards. To achieve
this effect, select Properties-Default light properties and tick the box ‘Allow light to be entered
reversed’; then click ‘Apply’. Figure 4.5 was made with this setting. It is possible to allow
reverse entry for only certain lights, for example only radial lights, using ‘light properties’: see
Chapter 12.
Cell merging can be used in conjunction with Qxw’s other grid types, although this is less
commonly wanted. Figure 4.6 shows a simple example of a rectangular grid with merged cells.
In general using merged cells increases the degree of checking between the entries in the grid,
and thus can make the grid harder to fill.
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Figure: 4.5: Filled circular grid with some words entered backwards
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Figure: 4.6: Filled rectangular grid with merged cells

4.3 Hexagonal grids

Qxw can also create crosswords based on hexagonal grids. In a hexagonal grid lights can run in
three different directions. Two types of hexagonal grid are provided: one with lights running
northeast, southeast and south, and the other with lights running east, southeast and southwest.
As usual, you specify the grid type and size using the Properties-Grid properties menu item
and you can cycle the cursor direction through the available options using the ‘Page Up’, ‘Page
Down’ and ‘slash’ keys. In other respects, constructing a hexagonal grid is just like constructing
a rectangular or circular grid. Figure 4.7 shows a simple example of a hexagonal grid.
Because most cells can have lights running through them in three different directions, it is pos-
sible for cells to be triply checked. This means that care is needed to ensure that overall the
degree of checking is not so high that the grid cannot be filled.
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Figure: 4.7: Filled hexagonal grid

4.4 The Isle of Wight

Qxw lets you construct grids where there is more than one letter in certain cells. You can con-
figure how the letters in the cell contribute to lights running through that cell.

S COW
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S U P A S
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P A L E A E S E A SAND
OWN

W S S C R I M SHANK
LIN

S T Y M I E

S O L VENT
NOR S

N A

Figure: 4.8: The Isle of Wight

Figure 4.8 shows a map of the Isle of Wight with major towns marked. In each case the name of
the town is divided into two parts, the first part being given by the across light through the cell
and the second part by the down light. So, for example, ’Ventnor’ is located at the intersection
of ‘solVENTs’ and ‘miNOR’.
A grid like this is created and automatically filled as follows. Start with a rectangular grid of
suitable size to enclose the whole map, and use cutouts (see above) to make the desired overall
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shape. Then select the cells where towns are to be placed: move the cursor to each in turn
and choose the menu item Select-Current cell (‘shift-C’). Now choose the menu item Properties-
Selected cell properties and tick the ‘Override default cell properties’ option. At the bottom
select ‘Lights intersecting here need not agree (vertical display)’. Click ‘Apply’.
Move the cursor to the first selected cell and choose the menu item Edit-Cell contents (‘control-
I’). In the two text boxes enter the two parts of the town name: for example, enter ‘VENT’ for
the contribution to Across lights, and ‘NOR’ for the contribution to Down lights. Obviously you
will want to divide the name in such a way that it does not make the fill too difficult. Repeat
this for each selected cell, entering the name of each town.
You can now deselect the cells using the menu item Select-Nothing (‘shift-N’). Then, with a
certain amount of trial and error, you can add bars to the grid to allow it to be filled.

4.5 Grid topologies

Qxw lets you construct variations on the plain rectangular grid where lights running off one
edge of the grid reappear on the opposite side. If you join a pair of opposite edges directly, the
result is equivalent to a circular grid as described above; if you join a pair of opposite edges
‘with a flip’, then the result is a grid with the topology of a Möbius strip; and if you join both
pairs of opposite edges the result has the topology of a torus. More advanced possibilities
available include Klein bottles (both pairs of opposite edges joined, one pair with a flip and the
other pair without) and the projective plane (both pairs of opposite edges joined with a flip).
These options are all available as ‘Grid types’ in the Grid properties dialogue that appears when
you select the Properties-Grid properties menu item.

E A C T O R A D V A N C

T O V A P O R E T T O A

H U M P E D I N V O I C

E D D E R I S I O N S T

N A T T A S T R E C E N

E D G A S C O O L E D R

Figure: 4.9: Grid on a Möbius strip

Figure 4.9 shows an example grid with the topology of a Möbius strip: lights that reach the
right-hand edge of the grid continue in the cell diametrically opposite on the left-hand edge.
Figure 4.10 shows an example grid with the topology of a torus. Here lights running off any
edge reappear in the corresponding position on the opposite edge.
Note that with grid topologies that have joined edges (which includes the special case of a
circular grid as mentioned above), it is possible to create unbounded lights. If Qxw cannot
determine where a light should start and finish it will not attempt to fill it.
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Figure: 4.10: Grid on a torus

4.6 Multiplex lights

A ‘multiplex light’ is one that can be filled with two or more alternative words. For example,
suppose you wish to design a grid where one light can read ‘BLACK’ or ‘WHITE’, all entries be-
ing real words in either case. Visit the first cell of the five-cell light and, using Edit-Cell contents
(‘control-I’), set its contents to ‘BW’ (the two possible first letters). Repeat for the remaining
four cells, setting their contents to ‘LH’, ‘AI’, ‘CT’ and ‘KE’ in turn. Finally, for this light and all
others that intersect it, use the Light properties dialogue to enable the ‘Multiplex light’ setting.
(If light properties are not being used for any other purpose in your grid, you can simply en-
able ‘Multiplex light’ in the Default light properties dialogue: the setting has no effect on lights
where all cells contain a single letter.)
When the cursor is sitting on a multiplex light, the ‘change direction’ keys (‘Page Up’, ‘Page
Down’ and ‘slash’) step through the alternative entries before moving on to the next direction;
the green number next to the cursor increments and decrements as you cycle through the alter-
natives.
A quicker way to enter letters in multiplex lights is to use the Light contents dialogue (Edit-
Light contents, ‘control-L’), which lets you type in the text of each alternative in one step.
Figure 4.11 shows an example where the light across the centre of the grid can read ‘BANKER’S
CLERK’ or ‘HIPPOPOTAMUS’ with all grid entries being real words in either case.
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Figure: 4.11: Grid with a multiplex light
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Grids with secrets

5.1 ‘Letters Latent’

In some advanced cryptic crossword puzzles, one or more of the clue answers are modified in
some way before entry in the grid. Qxw calls such modification ‘answer treatment’. Qxw will
help you construct grid fills with a wide range of such treatments, including misprints, ‘letters
latent’, various enciphering schemes, and many others. And, as we will see in Chapter 7, you
can even construct your own answer treatments.

            

            

            

            

            

            

            

            

            

            

            

            

Figure: 5.1: Blank grid for ‘letters latent’ puzzle

In this section we will construct a puzzle using the ‘letters latent’ answer treatment. Such puz-
zles usually come with a preamble along the lines of ‘one letter is to be omitted from the answer
to each clue, wherever it occurs, before entry in the grid; in each clue the subsidiary indication
leads to the grid entry’.

27
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Thus a clue answer of ‘QUINQUEREME’ might give rise to a grid entry of ‘UINUEREME’, the
‘Q’ being latent. It is not usually a requirement that the grid entry must itself be a word, but
often the sequence of latent letters, taken in clue order, provides a helpful or thematic message
to the solver.
The puzzle we will construct will apply the ‘letters latent’ treatment to the across answers only.
Start from a blank 12-by-12 rectangular grid (as provided by Qxw when it starts up). Add bars
to produce the diagram shown in Figure 5.1. Now tell Qxw which lights are to be treated. First
select them: use the menu option Select-Lights-in current direction with the cursor pointing in
the across direction. This will select all the across lights. Now choose the menu item Properties-
Selected light properties, tick the boxes ‘Override default light properties’ and ‘Enable answer
treatment’, and click ‘Apply’.
You can deselect the lights now if you wish, either by pressing ‘shift-N’ or using the menu item
Select-Nothing.
For more information on how to select lights see Chapter 11; for more about what you can do
with light properties, see Chapter 12.
Finally we need to specify the details of the answer treatment. Bring up the Answer treatment
dialogue by choosing the menu item Autofill-Answer treatment. At the top of the dialogue you
can choose the desired method of answer treatment: select ‘Letters latent: delete all occurrences
of letter’. In the box marked ‘Letters to delete’ enter the message ’better a witty fool’. The result
should look like Figure 5.2.

Figure: 5.2: Answer treatment dialogue

You can now proceed to fill the grid as normal. Figure 5.3 shows an example automatic fill. The
first and last across lights were chosen manually.

5.2 Hidden words

Qxw includes a powerful feature called ’free lights’. These let you specify that some sequence of
cells in the grid—not necessarily in a straight line or even adjacent to one another—constitutes
an additional light that must be filled from a dictionary. The examples that follow give an idea of
the range of effects that you can achieve using free lights, either on their own or in combination
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Figure: 5.3: ‘Letters latent’ automatic fill

with other features of Qxw. Note that free lights cannot be multiplexed.
For a simple example, start with a plain five-by-five square grid. Move the cursor to the top left-
hand corner and select the menu item Edit-Free light-Start new. An orange square will appear
at the cursor position. Move the cursor one square diagonally down and right, and select the
menu item Edit-Free light-Extend selected (‘control-E’). An orange line will appear, showing the
path of the free light you are constructing. Move the cursor one square diagonally down and
right once more, and again select the menu item Edit-Free light-Extend selected (‘control-E’).
Repeat the process twice more to construct a free light that runs down the leading diagonal of
the grid: see Figure 5.4.
Figure 5.5 shows an example fill of this grid: the word on the leading diagonal is ‘QUAGS’.

5.3 Hidden quotations

A common thematic device is to arrange for a quotation to appear around the perimeter of the
grid. In simple cases this is just a matter of entering the text of the quotation in the grid before
embarking on the rest of the fill. However, it is often acceptable for the quotation to start at an
arbitrary point on the perimeter and proceed either clockwise or anticlockwise. Qxw can take
advantage of this flexibility to find a superior fill for the rest of the grid.
Figure 5.6 shows a grid with a single free light running around the perimeter. Suppose we want
this light to spell out ‘IN THE WINDMILLS OF YOUR MIND’. Three further steps must be
taken before you can ask Qxw to fill this grid.
The first step is to ensure that Qxw does not also try to fill the seven-letter lights around the
edges of the grid with individual words. To do this, select the four lights in question: place the
cursor on each in turn, pointing in the direction of the light, and choose the menu item Select-
Current light (‘shift-L’) for each. With all four lights selected, choose the menu item Properties-
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Figure: 5.4: Square grid with free light running down the leading diagonal

Q B O A T
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H E R G E

S T Y E S

Figure: 5.5: Example fill of grid with free light

Selected light properties and in the dialogue that appears, tick the box ‘Override default light
properties’ and untick all the ‘Use dictionary’ boxes. Qxw will not now try to fill these lights.
The second step is to make a dictionary containing the desired quotation. You can do this using
an ordinary text editor to make a dictionary file with just one entry, but Qxw offers a short-cut.
Choose the menu item Autofill-Dictionaries. In the second row, make sure the ‘File’ entry is
blank and enter ‘IN THE WINDMILLS OF YOUR MIND’ (without the quotation marks) on the
right under ‘Answer filter’. This automatically creates a dictionary containing a single entry.
The third step is to set the properties of the free light. Select it by choosing the menu item
Select-Free light (‘shift-F’) and then choose the menu item Properties-Selected light properties.
Tick the boxes ‘Override default light properties’ and ‘Use dictionary 2’; make sure all the other
dictionary boxes are unticked. Also tick four of the ‘entry method’ boxes: ‘Allow light to be
entered normally’, ‘Allow light to be entered reversed’, ‘Allow light to be entered cyclically
permuted’ and ‘Allow light to be entered cyclically permuted and reversed’.



5.4. ‘CHERCHEZ LA FEMME’ 31

Figure: 5.6: Grid with free light running around perimeter
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Figure: 5.7: Filled grid with quotation running around perimeter

Click ‘Apply’ and you can try creating a fill: Figure 5.7 shows an example fill using a large
dictionary for the body of the grid.
The maximum length of a free light (indeed, the maximum length of any light) is 250 characters.

5.4 ‘Cherchez la femme’

In a ‘Cherchez la femme’ puzzle Across and Down lights do not agree in certain grid cells.
The letter to be entered in these cells is in each case some function of the two clashing letters:
for example, it might be the letter appearing midway between the two clashing letters in the
alphabet (treated cyclically), so that ‘B’ can arise from the clashes ‘A/C’, ‘Z/D’, ‘Y/E’, ‘X/F’,
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‘W/G’ or ‘V/H’—but not ‘U/I’, which would resolve to ‘O’. Traditionally the clashes resolve to
spell out, in grid order, a girl’s name, although similar treatments are used for many different
kinds of theme.
You can use free lights in conjunction with a specially-constructed dictionary to make such a
puzzle using Qxw.
The dictionary contains three-letter ‘words’ such as ‘ACB’, where ‘A’ and ‘C’ are the clashing
letters and ‘B’ the desired resolution. In simple cases (or if you have a lot of patience) such a
dictionary can be constructed manually using an ordinary text editor, but it is easier to write a
small program to do the task.
You can of course use any programming language you like: creating dictionaries is usually
not a computationally intensive job, so interactive and interpreted languages such as Python
or BASIC—or even a spreadsheet—are perfectly good choices. The example code shown in
Figure 5.8 is an implementation in C of a program to create a ‘Cherchez la femme’ dictionary.

#include <stdio.h>

main() {int i,j;

for(i=0;i<26;i++) for(j=1;j<7;j++) {
printf("%c%c%c\n",(i+j+26)%26+’a’,(i-j+26)%26+’a’,i+’a’);
printf("%c%c%c\n",(i-j+26)%26+’a’,(i+j+26)%26+’a’,i+’a’);
}

return 0;

}

Figure 5.8: Program to create a ‘Cherchez la femme’ dictionary

Use an ordinary text editor create a file mkclfdict.c containing the program code shown. Linux
users can compile it at the command line and run it as follows; compiling C programs under
Windows is discussed in Section 14.4.
gcc mkclfdict.c -o mkclfdict ./mkclfdict > clfdict.txt

This will create a file called clfdict.txt containing the 312 three-letter ‘words’ that represent
possible clashes and their resolutions. You can implement different methods of clash resolution
by making suitable modifications to the C program and then repeating the compilation and run
commands.
Now you can construct the grid. It will be in two parts: the grid proper and a separate isolated
area where the girl’s name will appear. For simplicity we will construct a five-by-five grid with
clashes down the leading diagonal, and we will make the clashes resolve to spell ‘FEMME’.
Figure 5.9 shows the grid with an isolated area at the bottom containing the word ‘FEMME’.
To load the specially-constructed dictionary, choose the menu item Autofill-Dictionaries. The
Dictionaries dialogue will appear. Click on the ‘Browse’ button in the second row and navigate
to where you created the file clfdict.txt and open it. Then click on ‘Apply’: this will load
your dictionary.
Now we select the five cells down the diagonal of the main grid: move the cursor to each in turn
and choose the menu item Select-Current cell (‘shift-C’). Now choose the menu item Properties-
Selected cell properties and tick the ‘Override default cell properties’ option. At the bottom
select ‘Lights intersecting here need not agree (horizontal display)’. Click ‘Apply’.
Move the cursor to the first selected cell and choose the menu item Edit-Cell contents (‘control-
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F E M M E

Figure: 5.9: Initial ‘Cherchez la femme’ grid

I’). In each of the two text boxes enter a single full stop (‘.’): you will probably find that the first
box is already correctly set up. Repeat for each selected cell.
You can now deselect the cells using the menu item Select-Nothing (‘shift-N’).
If you wish, you can try filling the grid now using the menu item Autofill-Autofill (‘control-G’).
The cells down the diagonal will be filled with (possibly) clashing letters, but the clashes will
bear no relation to the theme word.
To make the clashes generate the theme word we create five free lights, one per clash. Move the
cursor to the first clash cell (in the top left corner) and choose the menu item Edit-Free light-Start
new. An orange square will appear at the cursor position. Move the cursor to the first letter of
the theme word (the ‘F’ of ‘FEMME’) and choose the menu item Edit-Free light-Extend selected
(‘control-E’). An orange line will appear. Repeat these steps four times, starting a new free light
in each clashing cell and extending it to the corresponding letter of the theme word.
Select all five free lights: choose the menu item Select-Free light (‘shift-F’) and then Select-All
(‘shift-A’). The grid should look like Figure 5.10.
Select the menu item Properties-Selected light properties and tick the boxes ‘Override default
light properties’ and ‘Use dictionary 2’; make sure that the other ‘Use dictionary’ boxes are not
ticked. Click ‘Apply’.
The free lights you have created now have to be filled from the special dictionary. Each free light
gets its first two characters from the clashing entries in its main grid cell and its third character
from the corresponding cell in the theme word. This therefore enforces the constraint we need.
Assuming you have a reasonably large main dictionary, choosing the menu item Autofill-Auto-
fill (‘control-G’) will now create a grid with the clashes as required.
Figure 5.11 shows an example fill. Figure 5.12 shows an example fill of a six-by-six grid, and Fig-
ure 5.13 shows a fill of a six-by-six grid where the clashes are resolved by ‘adding’ the clashing
letters (with A = 1, B = 2, . . . , Z = 26) and treating the alphabet cyclically.
If you are not constrained to use a particular name you can of course leave the choice to Qxw by
providing it with a suitable dictionary containing a list of girl’s names, which you can make up
yourself or obtain from any number of public sources. You would then set the light properties
on the isolated light to ensure it is filled from this dictionary.
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Figure: 5.10: ‘Cherchez la femme’ grid with free lights added

CI L A I M

N AI U R U

G A LN A S

A N T IQ S

N A S I KY

F E M M E

Figure: 5.11: Automatically-filled ‘Cherchez la femme’ grid

5.5 ‘Eightsome reels’

An ‘eightsome reels’ grid consists of eight-letter words. Each is entered cyclically around a
blacked-out square. The starting point of each word and its direction of entry (clockwise or
anticlockwise) can be freely chosen by the setter.

5.5.1 Creating the grid manually

It is easy (if tedious) to set up such a grid in Qxw manually. For a small example, start with a
blank seven-by-seven grid and black out nine squares as shown in Figure 5.14.
Now prevent Qxw from trying to fill the seven-letter lights. Select all the lights: Select-Current
light (‘shift-L’) and then Select-All (‘shift-A’). Now use Properties-Selected light properties, tick
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PH I D O G S

E UG O U A E

F U NL R U N

T A M IA L S

E N E R VT E

D A N I S HD

L A M E U F

Figure: 5.12: Automatically-filled ‘Cherchez la meuf’ grid

TR H A N K S

E LO U E N T

S O ID R E E

O L I VI I A

R I O T EP D

B E S E E MS

L A M E U F

Figure: 5.13: Automatically-filled ‘Cherchez la femme’ grid with clashes resolved by adding letters

the box ‘Override default light properties’ and untick all the ‘Use dictionary’ boxes.
Next create an eight-letter free light around each of the nine blacked-out squares. Once that
is done, select all the free lights using Select-Free light (‘shift-F’) and then Select-All (‘shift-A’).
Use Properties-Selected light properties and tick the four ‘entry method’ boxes: ‘Allow light to
be entered normally’, ‘Allow light to be entered reversed’, ‘Allow light to be entered cyclically
permuted’ and ‘Allow light to be entered cyclically permuted and reversed’.

       

    

       

    

       

    

       

Figure: 5.14: Starting pattern for ‘eightsome reels’ grid
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Click ‘Apply’ and you can try creating a fill: Figure 5.15 shows an example result.

A D E T H A I

E L E R

D I A I R A C

A S D E

R O P O R A C

D E T E

N E S I O I R

Figure: 5.15: Example fill of ‘eightsome reels’ grid

5.5.2 Creating the free lights automatically

The tedious step in the above method is the creation of the free lights, and it would have been
yet more tedious if we had started with a larger grid.
An alternative approach is to use an external program to create a text file specifying the free
lights. The file should consist of a sequence of coordinate pairs, one pair per line.
The two elements of each coordinate pair (horizontal then vertical, or angular then radial in the
case of circular grids) must be separated by a space. Coordinates are counted from zero at the
top left of the grid (or top centre for circular grids). The sequence of coordinates comprising
one free light must be separated from those of the next by a blank line.
The free lights we need for the ‘eightsome reels’ grid can be created using a simple program
such as Figure 5.16, which is written in the C programming language; almost any programming
language is suitable for this kind of task.
You can compile and run this program as described above for the ‘cherchez la femme’ dictio-
nary. Collect its output in a file called eightsome.txt and then import this file into Qxw using
the menu item File-Import free light paths.
There is also a menu item File-Export free light paths that writes a text file in the above format
containing the paths of the currently-defined free lights. You can edit this file using a text editor
and then import it back into Qxw: in more complex situations this may be more convenient
than editing the paths within Qxw.

5.6 ‘Alphabetical jigsaw’

In an ‘alphabetical jigsaw’ puzzle the lights start in twenty-six distinct cells, each containing
a different letter of the alphabet. Except where an across and a down light start in the same
cell, each light therefore starts with a different letter. Conventionally the clues are presented in
alphabetical order of their answers, the solver being required to determine where they fit.
To create such a puzzle, first design a suitable blank grid. Usually a fifteen-by-fifteen blocked
grid is used, but other types are possible. To have Qxw fill the grid, create a free light running
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#include <stdio.h>

int main() {
int x,y;

for(x=1;x<=5;x+=2) {
for(y=1;y<=5;y+=2) {
printf("%d %d\n",x-1,y-1); // NW corner

printf("%d %d\n",x,y-1); // N

printf("%d %d\n",x+1,y-1); // NE corner

printf("%d %d\n",x+1,y); // E

printf("%d %d\n",x+1,y+1); // SE corner

printf("%d %d\n",x,y+1); // S

printf("%d %d\n",x-1,y+1); // SW corner

printf("%d %d\n",x-1,y); // W

printf("\n"); // blank line

}
}

return 0;

}

Figure 5.16: Program to create ‘eightsome reels’ free lights

through the light starting cells (of which there must be exactly twenty-six). Create a single-
entry dictionary containing the word ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’ using the same
technique as in Section 5.3, and set the properties of the free light so that it is filled from this
dictionary with all entry permutations allowed. You can now use the automatic fill function as
usual: a possible result is shown in Figure 5.17.
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F Q U X Y V

P R O D U C T S G Y R A T E

A R A I L R R

L A N D F I L L H O R N E T

E I F I B P I

D U C K S U L P H U R I C

A W A A O H E

O U T C A S T C A N C E L S

P O R I K E T

E A R T H W O R M Z O O M

R O N A J R A

A L T A R S K I N E T I C S

T E S L S C K

I M A G E D N E U T R A L S

C M S D S L

Figure: 5.17: Automatically-filled ‘alphabetical jigsaw’ grid



Chapter 6

Discretion

In the ‘letters latent’ example in Chapter 5 we explicitly selected which lights were to be treated
specially by the automatic filler before putting it to work on the grid. Sometimes, however, you
will have some flexibility in this choice: for example, the length of the message to be spelt out
by misprints in the grid may be less than the number of lights, and so you would choose to
leave some lights untreated. In other cases, for example if the grid is to be presented as a ‘carte
blanche’, you might be happy for the characters of a message to be spelt out in any order.
In these situations it would be greatly preferable if you could leave to the automatic filler the job
of choosing which lights to treat and which not to treat, or of deciding upon the order in which
the lights should be treated. Qxw can handle both these cases, and even the two in combination,
using the filler’s ‘discretionary modes’. Not all the built-in answer treatments allow the use of
these modes.
Start from a blank six-by-six grid. Enable answer treatment for all lights under Properties-
Default light properties. Call up the Answer treatment dialogue Autofill-Answer treatment and
select ‘Variable Caesar cipher’. (See Chapter 14 for information about this treatment.) Against
‘Encodings of A:’ enter ‘JULIUS’ and beneath that, set the letter allocation to ‘in clue order, at
discretion of filler’. Click ‘Apply’ and run the filler with Autofill-Autofill (‘control-G’). If you
have a reasonably large dictionary, you should get a result similar to Figure 6.1. Here the filler
has chosen to treat the second and last across lights, and the first, third, fourth and last down
lights, using the letters of ‘JULIUS’ in order.

T E R M L Y

Y N C J A M

S T O U T S

L O R C H A

F I C H E S

W L O M N U

Figure: 6.1: Grid filled with discretion

When you press Autofill-Accept hints (‘control-A’) to accept the filler’s suggestions a box will
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appear telling you that the ‘answer treatment constraints’ have been updated. The answer
treatment constraints, which are shown in the Answer treatment dialogue beneath the alloca-
tion method, record the filler’s decisions about which lights to treat. Initially we left this box
blank, but if you now call up the Answer treatment dialogue you will see that it has changed:
for the example here the box would be changed to read ‘-J---UL-IU-S’. In this string there is
one character for each light with answer treatment enabled (twelve in total). The string shows
which message characters have been allocated to which lights, with a dash (‘-’) indicating that
the filler decided not to treat this light after all.
If you now clear the grid using the Edit-Clear all cells (‘control-X’) command you will be
prompted ‘Reset answer treatment constraints?’. If you choose ‘Yes’ the constraints box in the
Answer treatment dialogue will be cleared; if you choose ‘No’ the contents of the box will be
preserved, and reinvoking the filler will use the same allocation of characters. You can also
change this string manually if you wish.
If instead of selecting ‘in clue order, at discretion of filler’ you had selected ‘in any order, at
discretion of filler’ you could have obtained a fill similar to the one shown in Figure 6.2. In
this case the answer treatment constraints were updated to read ‘UI---S-J--UL’, reflecting the
permutation of the message chosen by the filler.

M C W E Y L

A X I L M A

M A N A N A

M A G I L P

E R E N O W

E M D E M D

Figure: 6.2: Another grid filled with discretion



Chapter 7

Creating a customised answer
treatment

Qxw’s range of answer treatments includes most of those commonly found in advanced puz-
zles, but you are not limited to the built-in selection. In this chapter we will create a puzzle
where answers are ‘beheaded’—in other words, where an answer has its first letter removed to
make the light.

7.1 Compiling a simple plug-in

Expressing a new answer treatment method to Qxw involves writing a program, called a ‘plug-
in’. The job of the program is to generate the possible lights that can arise from a candidate
answer. To create the plug-in you will need to have a little experience with using the command
line and you will need to make sure that you have the gcc C compiler installed. (There is
an alternative approach under Windows: see Section 14.4.) But don’t worry if you have not
programmed in C before: in most cases the program will be very short indeed and easy to
understand, and writing a plug-in makes an ideal gentle introduction to C programming.
The examples in this chapter assume that your plug-in only has to deal with the letters ‘A’ to ‘Z’
of the default Roman alphabet. Writing a plug-in to deal with other alphabets can be a more
complicated proposition: see Chapter 14 for full details.

#include "qxwplugin.h"

int treat(const char*answer) {
strcpy(light,answer+1);

return treatedanswer(light);

}

Figure 7.1: Plug-in code to remove the first letter of an answer to make a light

Figure 7.1 shows a program that ‘beheads’ answers. It consists of a single function, called treat.
The work is done by the strcpy() command, which copies the answer string with an offset of
one character (hence ‘answer+1’) to the light.
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Using an ordinary text editor create a file behead.c containing the program code shown. Under
Linux, you can compile it at the command line as follows. (Under Windows, the situation is
slightly more complicated: see Section 14.4.)
gcc -fPIC behead.c -o behead.so -shared

This creates the compiled plug-in behead.so, which Qxw can use.
Now, in Qxw, recreate the simple blank grid of Figure 1.3. There are two further steps to make
Qxw use your new plug-in. First, select the menu item Autofill-Answer treatment, bringing
up the Answer treatment dialogue. At the top, select ‘Custom plug-in’ (Figure 7.2). Now click
‘Browse’ next to ‘Treatment plug-in’ to locate the plug-in file behead.so, and then click ‘Apply’.

Figure: 7.2: Selecting a custom plug-in in the Answer treatment dialogue

Second, as with the built-in answer treatments, you need to tell Qxw which lights are to be
treated. For this example, we will have all lights subject to treatment: select Properties-Default
light properties and tick the ‘Enable answer treatment’ box. Now, if you select Autofill-Autofill,
you should get a result similar to that in Figure 7.3.

A T E R E D

T T C A

E A T H E R S

D L N E

R E A T H S

Figure: 7.3: Grid with all lights being ‘beheaded’ words

You can force all lights to be words: select Autofill-Answer treatment and tick the ‘Treated
answer must be a word’ box. (This option is available for all answer treatments, although using
it will of course sometimes constrain the grid so much that it cannot be filled.) A fill might then
look like Figure 7.4.
It is possible to write answer treatment plug-ins that make use of messages, just like the built-in
‘Letters latent’ or ‘Misprint’ plug-ins. Figure 7.5 shows a simple example.
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A C T O R S

B R A A

L E A D I N G

E I S E

O T H E R S

Figure: 7.4: Grid with all lights being ‘beheaded’ words that are themselves words

#include "qxwplugin.h"

int treat(const char*answer) {
if(answer[0]!=msgcharAZ09[0]) return 0;

strcpy(light,answer+1);

return treatedanswer(light);

}

Figure 7.5: Plug-in code to behead answers so that deleted letters in clue order yield a message

This example checks that the character that is about to be deleted matches the appropriate letter
of the message before allowing it as a treated answer. Figures 7.6 and 7.7 show grids filled using
this plug-in.

U T R A C E S

A E E L E R S

R O N T A G E

A B E E R E X

C E C R E A M

H A N N A H A

E R D S M A N

Figure: 7.6: Grid with all lights being ‘beheaded’ words, with deleted letters in clue order spelling out
‘OFF WITH HIS HEAD’

Section 14.3 gives a full description of what is possible, including a discussion of how to write
a plug-in where two or more different lights can arise from a single answer.

7.2 Combining plug-ins and discretion

You can use your plug-in in conjunction with the discretionary modes of the filler described in
Chapter 6. There are certain restrictions you must observe: see Section 14.3.3 for details.
Consider the modification to the code in Figure 7.5 shown in Figure 7.8. This code makes use
of both messages via the variables msgcharAZ09[0] and msgcharAZ09[1]. The intention is that
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R E E C H O

A B I P

S A B E L L A

E E L H

O D I S T S

Figure: 7.7: Grid with all lights being ‘beheaded’ words that are themselves words, with beheadings in
clue order spelling out ‘PIMENTO’

the second message consists only of the digits 0 and 1, and that both messages are used ‘in clue
order, at discretion of filler’.

#include "qxwplugin.h"

int treat(const char*answer) {
if(msgcharAZ09[0]==’-’ && msgcharAZ09[1]==’-’) return treatedanswer(answer);

if(lightdir==0 && msgcharAZ09[1]!=’0’) return 0;

if(lightdir==1 && msgcharAZ09[1]!=’1’) return 0;

if(answer[0]!=msgcharAZ09[0]) return 0;

strcpy(light,answer+1);

return treatedanswer(light);

}

Figure 7.8: Plug-in code to behead answers with control over distribution of answers

There are several tests in the code. The effects of these tests are: a character will be used from
message 0 if and only if a digit is used from message 1; if no digit is used from message 1 then
the answer is used untreated as the light; a ‘0’ digit is used from message 1 only in across lights
and a ‘1’ only in down lights; and where a character is used from message 0 it must match the
first character of the light, which is then removed.
Now, for example, if this plug-in is used with a grid with twelve across lights and twelve down
lights, with message 0 set to ‘HALFWAYHOUSE’ and message 1 set to ‘000000111111’ (six ze-
ros and six ones), then the result will be that six (i.e., exactly half) of the across lights and six
(again, exactly half) of the down lights will be treated, and the deleted characters will spell out
‘HALFWAYHOUSE’. An example fill is shown in Figure 7.9.
This idea can be extended to apply different answer treatments to different lights depending
on their direction, position or other characteristics, with as much of the decision-making as you
wish left to the automatic filler.
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T O P A G A K H A N

H R M L O I

A M A T E L I N E S

N T N O E

K I S T S A P S E S

E T

R A S E D A B L E R

C I X O I

B L A I N O K I N G

R T G N N E

A R T I S T S S I S

Figure: 7.9: Grid with exactly half of all across lights and half of all down lights being beheaded, the
beheadings in clue order spelling out ‘HALFWAYHOUSE’; all lights are words



Chapter 8

Puzzles using digits, accents and
non-Roman characters

8.1 Numerical puzzles

Qxw can fill grids with digits instead of, or as well as, letters. Figure 8.1 shows an automatically-
filled example, constructed using two custom dictionaries and setting light properties to allow
reverse entry.

6 4 1 4 1 9

3 2 0 0 0 2

1 7 0 7 4 9

7 2 4 4 4 8

9 4 8 0 0 7

1 8 9 3 9 1

Figure: 8.1: Grid with each across light being a prime or the reverse of a prime, and each down light being
a square or the reverse of a square

Digits can be used in a conventional word-based puzzle as proxies for special characters or for
other thematic purposes. Figure 8.2 shows a simple example of what can be done. Again, a
special-purpose dictionary was used to create this grid.

8.2 Accents and non-Roman characters

Although by default Qxw starts up prepared to fill grids with the letters A to Z and digits, it
can be configured to accept accented characters, non-Roman characters and a wide range of
symbols. Qxw comes with a number of predefined alphabet configurations to support various
languages, or you can create your own alphabet configuration: see Chapter 9 for details. Note,
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P O S T P 1 D

A H H I

R E A S 1 R S

A R R H

G R E Y S T 1

1 B I S

D O 1 S N U T

Figure: 8.2: Grid containing a mixture of letters and digits

however, that Qxw can only cope with up to 60 different symbols (plus blank) in the grid at
once, and so cannot handle languages such as Chinese whose writing system uses a very large
number of symbols, or the Hangul writing system, which combines vowels and consonants into
syllabic blocks.

Ν Ε Ο Ο Σ Ι Ε Τ Μ Σ Υ

Α Υ Ο Α Τ Σ Κ Ν Ε Ι Ι

Κ Ε Κ Θ Ε Ο Ν Α Ε Ο Λ

Σ Λ Α Ι Τ Μ Ε Ω Κ Ρ Ο

Τ Α Υ Τ Ρ Ο Σ Ο Δ Π Ε

Η Κ Λ Ν Ω Ι Σ Ι Ι Η Ο

Α Δ Ε Ω Σ Τ Π Ν Ο Τ Ρ

Λ Α Ν Τ Ο Π Α Σ Ο Ε Π

Υ Ι Μ Σ Π Κ Ο Ε Ο Ν Α

Ε Ε Σ Α Ο Ρ Μ Ν Ν Α Γ

Θ Ι Ε Π Ε Α Η Υ Ι Ι Σ

Figure: 8.3: Grid filled with jumbles of words from the works of Herodotus: identifying the unjumbled
forms is left as an exercise for the reader

To use a different alphabet select Autofill-Alphabet to bring up the Alphabet dialogue (see Fig-
ure 9.2) and click on ‘Initialise from language default’. You will be presented with a list of
the built-in alphabet configurations, which includes Czech, Danish, Dutch, Estonian, Finnish,
French and Italian, German, Ancient Greek (polytonic), Modern Greek (monotonic), Hungarian,
Norwegian, Polish, Romanian, Russian, Slovenian, Spanish and Swedish, plus ‘Empty’ (which
you can use to create a new configuration from scratch). Select one of these and the boxes below
will be populated with the appropriate settings.
Of course, in order to use the automatic filling facilities of Qxw you will need a dictionary
that matches the alphabet you are using. The alphabet configuration includes information that
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lets Qxw process a dictionary file correctly when it is loaded. For example, the handling of
‘Ö’ differs between Finnish, German and Hungarian: in Finnish it is a letter in its own right,
distinct from the unaccented version; in German crosswords (but not in German Scrabble!) it is
conventionally expanded into the sequence ‘OE’; and in Hungarian crosswords it is a letter in
its own right, allowed to check ‘Ő’ but not ‘O’ or ‘Ó’. See Section 9.6 and Section 9.7 for more
details. Figure 8.3 shows an example prepared using a special dictionary file.
You will also need to know how to generate the symbols you want using your keyboard. If
you need to enter a symbol that is not directly supported by your keyboard you can use the
Cell contents dialogue (see Section 12.3) or you may be able to use a ‘Character Map’ or similar
application.
It is possible to create a customised alphabet to produce effects like that illustrated in Figure 8.4.
Here an alphabet consisting of all the symbols required to write both English and Greek words
is used, with appropriate mappings to allow English and Greek words to check where their
letters can be represented by the same symbol, even if they do not represent similar sounds.
Again, see Section 9.7 for more details.

Ρ Ε Μ Π Ε Λ Ε Ψ Α

Η Υ Χ

Τ Ε Χ Ν Ο Δ Ο Μ Η

Η Ο Ν Ε Τ

Α Θ Ε Τ Ο Υ Ν Τ Α

Μ Ζ

Α Ν Ε Π Ι Λ Υ Τ Ο

Τ Μ Μ Τ

Ε Π Α Ν Ε Τ Ε Θ Η

Figure: 8.4: Horizontal words are Greek; vertical words are English

8.3 Answer treatments using non-Roman alphabets

As far as possible Qxw adapts its answer treatment mechanisms to suit different alphabets: see
Section 14.1 for more details.
Qxw’s handling of non-Roman alphabets has been designed to be backwards-compatible with
previous versions of the program. Existing plug-ins will still work when using the ‘Roman A-
Z’, ‘Digits only 0-9’ and ‘Roman plus digits A-Z 0-9’ alphabets (and indeed with any alphabet
that only uses characters from the 7-bit ASCII set).
Many plug-ins can be adapted very simply to work with non-Roman alphabets thanks to Qxw’s
use of ‘internal character codes’ (ICCs), which can be handled exactly like ordinary C charac-
ters; and strings of ICCs can be handled exactly like ordinary C strings. So for example the
‘beheading’ plug-in shown in Figure 7.1 can be modified as shown in Figure 8.5 and will then
work with any alphabet.
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#include "qxwplugin.h"

int treat(const char*answer) {
strcpy(light,answerICC+1);

return treatedanswerICC(light);

}

Figure 8.5: Plug-in to behead an answer to make a light, compatible with any alphabet

It is also possible to write your plug-in in terms of UTF-8 or Unicode character encodings: for
full technical details see Section 14.3.1.
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Chapter 9

Dictionaries and alphabets

When Qxw starts it looks for lists of words in various places on your system. If not otherwise
configured, it will try to find a suitable list and load it to use as its dictionary for automatic
filling. Often the first word list it finds is designed for use with a spell checker and this is
not always ideal for constructing crosswords: in particular it may contain many abbreviations,
proprietary names, and words ending in apostrophe–s.
You can change this behaviour by setting a ‘default dictionary’ in the Preferences dialogue: see
Section 10.1 for more details. Qxw will then attempt to load this dictionary as its default from
the next time you start it up. You can also configure an accompanying file filter and answer
filter: see Section 9.2.
If you are setting a different default startup dictionary you may also want to change the default
alphabet on startup: see Section 9.6.
The dictionary used at startup can also be set from the command line using the -d option under
Linux; under Windows the invocation is similar, with suitable changes to reflect the syntax of
Windows path names. A dictionary specified from the command line takes priority over one
specified in the Preferences dialogue.
To change the dictionary configuration after startup use the menu item Autofill-Dictionaries.
This will open the Dictionaries dialogue (see Figure 9.1). Ignore everything except the top-left
corner for the moment: either enter the full filename in the topmost box under ‘File’, or click
on the topmost ‘Browse’ button and navigate to the word list file you want to use. Then click
‘Apply’. (You will get an error message at this point if, for example, the specified word list file
does not exist.) If you are using the default Roman alphabet, Qxw will automatically construct
a dictionary by removing all punctuation, accents and spaces from the words in the list; see
Section 9.6 for information about how other alphabet configurations behave.
When you now use the autofill feature you should see that the new dictionary is being used.
Qxw is normally used with dictionaries stored as plain text files. However, it also includes
a feature that allows it to attempt to read dictionaries stored in ‘TSD0’ and ‘TSD1’ formats,
which conventionally have a ‘.TSD’ file extension. Since these file formats are not properly
documented, there can be no guarantee that Qxw will read such dictionaries correctly.
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Figure: 9.1: The Dictionaries dialogue

9.1 Using multiple dictionaries

Qxw can handle up to nine dictionaries at once. Each light in the grid can be drawn from any
combination of these dictionaries (see Chapter 12). The word list files used can be specified
at the command line using repeated -d options or using the Dictionaries dialogue as above,
entering one filename in the leftmost box of each row.
By default Qxw will only use the first dictionary to fill normal grid entries. To change this, use
the Light properties dialogues (see Chapter 12). If you add a new dictionary and no lights are
currently configured to use it, Qxw will display a warning.

9.2 Customising the dictionaries

The contents of a dictionary can be customised using the filters provided in the Dictionaries
dialogue. There are two filters associated with each dictionary. By default these filters are
blank, which means that all the entries in the original word list are accepted. However, by
entering a simple matching pattern, a custom dictionary can be created containing only words
with a certain property. The filter syntax is that of ‘Perl compatible regular expressions’ or
PCREs. See http://en.wikipedia.org/wiki/PCRE for more details, and there are some useful
examples at http://en.wikipedia.org/wiki/Regular expression; the most authoritative source
of information is at http://www.pcre.org/.
The first filter, the ‘File filter’, acts on the lines of text in the original word list file. Only lines
that match the given PCRE are processed further; others are rejected. The primary use of the
file filter is to help eliminate undesirable entries from the dictionary. One situation you might
encounter is that you have a dictionary file that includes comment lines whose first character is
hash (‘#’). To have Qxw ignore these lines when reading the file, set the ‘File filter’ to read
^[^#]

The word list found on many systems at /usr/share/dict/words often includes many entries
ending apostrophe–s, which are not suitable for use in a crossword grid. They can be removed

http://en.wikipedia.org/wiki/PCRE
http://en.wikipedia.org/wiki/Regular_expression
http://www.pcre.org/
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by specifying a file filter that reads
^.*+(?<!’s)

Qxw automatically applies exactly this filter when trying to load words from a default system
dictionary (but not if you specify this dictionary’s name explicitly on the command line).
The second filter is called the ‘Answer filter’. This acts on the string of characters obtained
from the line in the word list file after punctuation, accents and spaces have been removed in
accordance with the current alphabet configuration. Only answers that match the PCRE are
accepted for potential use in grid filling; others are rejected. The answer filter provides an
easy way to create a crossword with a simple theme. Here are some examples; consult the
documentation mentioned above for the full range of possibilities.

To create a dictionary where: set the answer filter to:
every entry starts in ‘e’ ^e

no entry starts in ‘e’ ^[^e]

every entry ends in ‘e’ e$

no entry ends in ‘e’ [^e]$

every entry contains an ‘e’ e

no entry contains an ‘e’ ^[^e]*$

Both the file filter and the answer filter are insensitive to case.
The same source word list can be used in conjunction with different filters to make two or more
different dictionaries. Using this in conjunction with ‘Light properties’ (see Chapter 12) you can
construct a grid where (for example) no across answer contains the letter ‘e’ and each down
answer contains the letter ‘q’.

9.3 Single-entry dictionaries

In some situations it is useful to construct a dictionary with a single entry. Although it is
straightforward enough to use a text editor to create a suitable file (see below) there is an even
easier way: leave the ‘File’ field in the Dictionaries dialogue blank, and enter the desired word
under ‘Answer filter’.

9.4 Making dictionaries using external tools

Since Qxw’s dictionaries are simple plain text files with one entry per line, you can create your
own using any ordinary text editor (be sure to save the result as ‘plain text’, with UTF-8 en-
coding if you are offered a choice). You can use any of the standard Linux command-line text
processing utilities such as grep, awk and perl, or Windows Notepad. For a Linux example, to
create a dictionary vowel containing just those entries in ukacd18 that start with a vowel, type:
grep "^[aeiouAEIOU]" <ukacd18 >vowel

9.5 Dictionary file encodings

Qxw can read dictionaries stored as plain text files. It will make reasonable efforts to determine
if your file is encoded using UTF-8, UTF-16 (big-endian or little-endian), UTF-32 (big-endian
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or little-endian) or eight-bit ISO/IEC 8859-1, and should almost always work correctly in these
cases.
However, there is a small chance that your dictionary file, especially if it was originally prepared
under an early version of the Windows operating system, will be encoded differently, typically
in an eight-bit format according to a particular ‘code page’. Qxw cannot reliably detect auto-
matically exactly what encoding is used in these cases, and will most likely treat the text as if it
were encoded according to ISO/IEC 8859-1. The result will be that some characters—in partic-
ular accented and non-Roman characters—will be processed incorrectly. To use such a file with
Qxw you should convert its format to UTF-8.
Under Windows you can load your file (having made a backup copy!) into Notepad, verify
that it is displayed correctly, and then use ‘Save As...’. This will give you an ‘Encoding’ option
which you should set to ‘UTF-8’. Save the file under a new filename, and you should find that
Qxw will read the new file correctly.
The free program Notepad++ also has built-in conversions from a wide range of character en-
codings.
It is relatively rare to find plain text files on Linux systems encoded using anything other than
UTF-8; but if you do need convert the encoding of a file, the iconv utility is very versatile.
An example invocation to convert a file from code page 1250 (used for Central and Eastern
European languages based on a Roman alphabet) to UTF-8 is as follows.
iconv -f CP1250 -t UTF-8 <inputfile >outputfile

9.6 Alphabets

Qxw supports the creation of crosswords using symbols beyond just the letters A–Z and the
digits 0–9.
The alphabet that Qxw uses can be selected using the Alphabet dialogue (Autofill-Alphabet). It
can also be configured at startup by setting a ‘default alphabet’ in the Preferences dialogue: see
Section 10.1 for more details. Qxw will then use this alphabet as its default from the next time
you start it up. You can also configure a default dictionary at startup.
Another way to configure the alphabet in use at startup is from the command line, using the -a

option followed by one of the names (without quotation marks) specifying an alphabet accord-
ing to the following table.

Alphabet Names
Roman A-Z "Roman", "AZ"

Digits only 0-9 "Digits", "09"

Roman plus digits A-Z 0-9 "RomanDigits", "AZ09"

Czech "Czech", "CZ"

Danish and Norwegian "Danish", "Norwegian", "DA", "NO"

Dutch "Dutch", "NL"

Estonian "Estonian", "EE"

Finnish "Finnish", "FI"

French and Italian "French", "Italian", "FR", "IT"

German "German", "DE"
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Alphabet Names
Ancient Greek (polytonic) "AncientGreek", "AG"

Modern Greek (monotonic) "ModernGreek", "MG", "EL"

Hungarian "Hungarian", "HU"

Polish "Polish", "PL"

Romanian "Romanian", "RO"

Russian "Russian", "RU"

Slovenian "Slovenian", "SI"

Spanish "Spanish", "SP", "ES"

Swedish "Swedish", "SE"

Empty "Empty", "Null"

An alphabet specified from the command line takes priority over one specified in the Prefer-
ences dialogue.

9.7 Custom alphabets

It is possible to create your own custom alphabet, for example to support a language not in-
cluded in the built-in set, or to allow special symbols to appear in the grid. Qxw uses the
Unicode system to represent characters: this is an extension of ASCII (American Standard Code
for Information Interchange) that assigns a number (called a ‘code point’) to virtually every
symbol used in virtually every language of the world, living or dead. Unicode code points are
conventionally written ‘U+’ followed by the number in hexadecimal, so for example U+0041
represents capital ‘A’ and U+03A9 represents Greek capital omega. You may find an applica-
tion called something along the lines of ‘Character Map’ on your computer, which will let you
explore the characters available to you and show you their Unicode code points. The most au-
thoritative source of information on Unicode can be found at http://www.unicode.org and the
code charts are indexed at http://www.unicode.org/charts/.
Except as noted below, any printable symbol in the first three Unicode planes (that is, with code
points up to 0x2FFFF inclusive) can be used in Qxw. These are the basic multilingual plane, the
supplementary multilingual plane, and the supplementary ideographic plane.
Under Windows, Qxw supports Unicode version 6.0; the version supported under Linux de-
pends on the versions of libraries present in the system, but for a reasonably recent installation
will typically be at least version 10.0.
The following characters, which have various special meanings in Qxw, may not be used: verti-
cal double quotation marks (U+0022); hash (U+0023); comma (U+002C); hyphen (U+002D); full
stop (U+002E); question mark (U+003F); commercial at (U+0040); square brackets (U+005B and
U+005D); caret (U+005E).
Specifying an alphabet involves more than just giving a list of symbols that can go in the grid.
For each possible symbol that can appear in a grid entry, Qxw also needs to know what charac-
ters in dictionary files can map to that symbol, whether it is considered a vowel or a consonant,
and whether it forms part of a contiguous sequence of symbols in ‘dictionary order’. This in-
formation is entered in the Alphabet dialogue (see Figure 9.2).
The leftmost column gives the symbol that will be displayed in the grid (the ‘entry’), which will
most often be an upper-case letter. The next column gives a list of all the characters that can
appear in a dictionary file that you would like mapped to that grid entry. This list will usually
comprise various accented forms of the grid entry letter.

http://www.unicode.org
http://www.unicode.org/charts/
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Figure: 9.2: The Alphabet dialogue

These first two columns can be edited as Unicode code points if you prefer: use the button at the
top of the dialogue to switch between editing as printable characters (the default) and editing
as Unicode code points. This can be helpful in situations where you are using symbols that look
similar or identical to one another on the screen, such as Roman capital ‘A’ and Greek capital
alpha.
The box in the third column is checked to indicate that the entry in question is a vowel, and
the box in the fourth column is checked to indicate that the entry in question is a consonant.
More precisely, you are specifying here whether the entry is a member of the set represented
by the special symbols ‘@’ and ‘#’: although these are conventionally used to represent the sets
of vowels and consonants respectively, there is no reason why they cannot be configured for a
different purpose.
The box in the final column is checked to indicate that the natural successor to the entry in
dictionary order is given in the next row of the table. This is so that Qxw can know that it
can represent, for example, the set of letters ‘FGHIJKL’ compactly as ‘F-L’. In the configuration
‘Roman plus digits A-Z 0-9’ the entry ‘Z’ has this box unchecked. That means that Qxw will
write the set of symbols ‘WXYZ0123’ as ‘W-Z0-3’ and not as ‘W-3’.
If your alphabet contains both letters and digits, you should normally list all the letters first,
followed by the digits. Any symbols and other special characters you wish to use should appear
at the end. The reason for this is explained in Section 9.9.
The groups of three buttons on the far right allow you to manipulate the alphabet table row
by row. The first button inserts a new blank row in the table, pushing the subsequent rows
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down by one position; information in the bottom row is lost. The second button exchanges the
information in the current row with the information in the next row. And finally the third button
deletes the current row, bringing all subsequent rows up by one position and introducing a new
blank row at the bottom of the table.

9.7.1 Two-character expansions

If the first field in a row of the Alphabet dialogue contains two characters, then it is treated
specially: when a dictionary is read, characters given in the second field are mapped to that
pair of characters. Each character in that pair should occur elsewhere in the Alphabet dialogue
as a separate possible grid entry. This allows the expansion of umlauted vowels in German to
the undecorated vowel followed by the letter ‘E’ (e.g. Ä to AE) and scharfes S (‘ß’) to ‘SS’, and,
in Ancient Greek, the conversion of iota subscript to iota adscript.

9.7.2 Further remarks on alphabets

The alphabet configuration is saved along with the grid. It is not possible to use ‘Undo’ to
reverse changes that have been made to the alphabet configuration after you have clicked on
‘Apply’. Internally, Qxw uses codes in the range 1–60 to represent characters: these ‘inter-
nal character codes’, or ICCs, are the numbers shown to the left of each row in the Alphabet
dialogue. These codes are not adjusted when the alphabet is changed, and so changing the al-
phabet when a grid is half-completed may give unexpected results. When a change is made to
the alphabet all dictionary files are re-read and any answer treatment plug-in is reloaded.

9.8 Diagnosing problems with dictionaries and alphabets

It is easy to make a mistake when setting up an alphabet and dictionary, resulting in unexpected
‘words’ in the feasible word list or in a grid fill. To help diagnose this kind of problem, you
can use the Dictionary statistics dialogue, which you can call up by selecting the menu item
Autofill-Analyse dictionaries: see Figure 9.3.
There is one tab in this dialogue for each dictionary, showing the following information. First
is the name of the dictionary file, or, in the case of a single-entry dictionary, its entry. Next is
the number of ‘usable entries’ it contains, which is the number of lines in the dictionary file
that contain at least one valid character in the current alphabet. Following that is the number
of entries remaining after the ‘file filter’ and then the ‘answer filter’ are applied. Finally there
is a list of all the characters found in the file that are not representable in the current alphabet
and which have therefore been ignored. Each is given as its Unicode code point, printed repre-
sentation, and number of occurrences. For plain-text dictionary files, the line number of its first
occurrence is also shown.
If you find that the entries in your dictionary files are not being displayed correctly in the feasi-
ble word list or in a grid fill, you should also check that your files use a character encoding that
Qxw understands: see Section 9.5.
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Figure: 9.3: The Dictionary statistics dialogue

9.9 Character classification

Qxw classifies each character of the current alphabet as a letter, a digit, or a symbol. It uses this
classification, for example, when performing a Caesar cipher answer treatment to ensure that
letters are always encoded as letters, digits as digits, and symbols as symbols.
Qxw bases its classification on the Unicode properties of each character in the current alphabet.
Starting with the first character of the alphabet it collects all those whose Unicode properties
indicate that they are alphabetic, and groups these into the ‘letter’ class. It then collects any
subsequent characters whose Unicode properties indicate that they are numeric, and groups
these into the ‘digit’ class. All subsequent characters are grouped into the ‘symbol’ class.
That means that if you follow the advice above and list letters followed by digits followed by
symbols you will get the expected behaviour. But you can also arrange to have a character
that would normally be thought of as a letter to be classified as a symbol. For example, if your
alphabet is (in order) ‘ABCX012*’ then A, B, C and X will be considered letters, 0, 1 and 2 digits,
and * a symbol. If, on the other hand, your alphabet is ‘ABC012X*’ then A, B and C will be
considered letters, 0, 1 and 2 digits, and X and * symbols. Thus the sets ‘letters’, ‘digits’ and
‘symbols’ are represented by three consecutive blocks of internal character codes.



Chapter 10

Preferences and statistics

10.1 Preferences

The Preferences dialogue (Figure 10.1) is accessed via the menu item Edit-Preferences. It allows
you to configure a number of details of the way Qxw behaves.

Figure: 10.1: The Preferences dialogue: ‘Export’ tab

Under the Export tab you can specify the size of cells in exported grids. For square grids, this
is the length of the side of the square; for hex grids, the approximate distance between two
parallel sides of a cell; and for circular grids, the height of the cell in the radial direction.
There is also an option to specify whether light numbers are included in exported solutions.
Other marks are always included.
Normally, clicking the mouse in the grid moves the cursor, or, if you click on top of the cursor,
changes the current direction. Under the Editing tab you can configure Qxw so that when you
click near an edge of a cell a bar is added or removed, or so that when you click near a corner a
block is added or removed. You can have both of these behaviours active at once if you like.
Also under Editing you can arrange for light numbers to be displayed in the grid as you edit,
or you can suppress them to reduce clutter. Other marks always appear.
You can configure Qxw’s idea of ‘underchecked’ and ‘overchecked’ under the Statistics tab.
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The minimum checking ratio (before a light is deemed ‘underchecked’) is expressed as the per-
centage of checked cells in the light. The default value of 66% means that one unch is allowed
in lights at least 3 cells long, two unches in lights of at least 6 cells, and so on. This is reasonable
for typical barred grids, but you may wish to reduce the ratio to 50% for blocked grids.
The maximum checking ratio (before a light is deemed ‘overchecked’) is expressed as the per-
centage of checked cells in the light plus one cell. This permits fully-checked entries of up to
a certain maximum length. The default value of 75% means that lights of up to 4 cells may be
fully checked, lights of up to 8 cells must have one unch, lights of up to 12 cells must have two
unches, and so on.
Under the Autofill preferences tab you can say whether the automatic fill function should al-
ways give the same result (‘Deterministic’) or potentially a different result every time it is in-
voked (‘Slightly randomised’ or ‘Highly randomised’). The filler implements randomisation
by not necessarily trying to put letters in cells in (what it regards as) the optimal order; as a
consequence enabling randomisation may make the filler run more slowly.
By default the autofill function checks that no (pre-treatment) answer or light occurs twice in
the grid. Untick ‘Prevent duplicate answers and lights’ to remove this check.
Under the Lookup tab you can configure what appears in the ‘context menu’ that pops up when
you right-click on a word in the feasible word list. For each of the six available slots, you can
specify its ‘name’ (how it is listed in the menu) and the corresponding URI (Uniform Resource
Identifier) that Qxw will attempt to open. Within the URI you should include the sequence %s,
which Qxw will replace with the word to be looked up. For security reasons, Qxw will only try
to open a URI that starts http:// or https://, but note that a maliciously-designed preferences
file could allow an attacker to exploit a security weakness elsewhere in your system by opening
an unwanted page in your browser.
Under the Startup tab you can configure the dictionary and alphabet that Qxw will use when
it starts up. See Chapter 9 for more information. Note that if you are changing the default
alphabet at start-up you will almost certainly want to configure a matching default dictionary
too.
Under Linux, the preferences file is normally located at .qxw/preferences in the user’s home
directory. Under Windows, it is normally located at C:\Documents and Settings\username\
Application Data\Qxw\Qxw.ini.

10.2 Statistics

Selecting the menu item Edit-Show statistics brings up the Statistics dialogue: see Figure 10.2.
At the top of the dialogue under the ‘General’ tab is a table analysing the lights in the grid by
length. For each length it shows the number of lights of that length, the number of these (and
percentage) that are under- or over-checked, the average checking ratio (proportion of checked
letters in a light) and the minimum and maximum checking ratios.
Below the table some more general statistics appear, including the total light count, the mean
light length, the number of letters checked across all lights, the number of checked grid cells, a
count of lights with double unches and triple-and-above unches, and the number of free lights.
You can adjust Qxw’s idea of what ‘underchecked’ and ‘overchecked’ mean in the Preferences
dialogue: see Section 10.1.
The Statistics dialogue also reports when there are any lights in the grid that are too long for the
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Figure: 10.2: The Statistics dialogue: ‘General’ tab

automatic filler to operate on. This can happen when using multiple characters per grid cell,
with types of grid that allow lights to wrap around, or when using free lights.
The dialogue will also show a warning when there are too many lights with answer treatment
enabled to allow the use of the discretionary fill modes.

Figure: 10.3: The Statistics dialogue: ‘Entry histogram’ tab

Clicking on the ‘Entry histogram’ tab will show a histogram of the characters used in the grid.
Only characters that have been entered into the grid are counted: grey ‘hint’ letters are not
counted. You can use this, for example, to check whether a fill is pangrammatic.
Unlike Qxw’s other dialogues, you can leave the Statistics dialogue active while you edit the
grid. The information it displays is continuously updated as you work.
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Selecting cells and lights

Several of Qxw’s functions operate on a selected set of cells or lights in the grid. For example, the
menu item Edit-Clear selected cells (‘shift-control-X’) erases the letters that have been entered
in the selected cells. Keyboard short-cuts for commands to do with selection involve the shift
key.
Qxw can be in one of two selection modes: ‘cell mode’ and ‘light mode’. The cell selection
commands switch Qxw to cell mode; the light selection commands switch Qxw to light mode.
Blocks and cutouts cannot be selected. Selected cells are shown with a solid highlight; selected
lights are shown highlighted by a thick line.
See Section 13.2 for information on how to select free lights.

11.1 Selecting cells

Cells can be selected and deselected by holding down the shift key and the left mouse button
while moving the mouse over the grid.
The command Select-Current cell (‘shift-C’) switches Qxw to cell selection mode (if it is not
already in that mode) and adds the current cell to or removes the current cell from the cell
selection.
When in cell selection mode, the command Select-Nothing (‘shift-N’) deselects all cells, leaving
Qxw in cell selection mode; the command Select-All (‘shift-A’) selects all cells; and the command
Select-Invert (‘shift-I’) selects all cells previously not selected, and deselects all cells previously
selected.
The command Select-Cells-overriding default properties switches Qxw to cell selection mode
(if it is not already in that mode) and selects those cells which have been set to override the
default cell properties (see Section 12.1).
The command Select-Cells-flagged for answer treatment switches Qxw to cell selection mode
(if it is not already in that mode) and selects those cells which have been flagged for answer
treatment (see Section 12.1).
The command Select-Cells-that are unchecked switches Qxw to cell selection mode (if it is not
already in that mode) and selects those cells which are not checked.
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11.2 Selecting lights

Lights running in the direction in which the cursor is pointing can be selected and deselected
by holding down the shift key and the right mouse button while moving the mouse over the
grid. (This feature is not available under all versions of the Windows operating system.)
The command Select-Current light (‘shift-L’) switches Qxw to light selection mode (if it is not
already in that mode) and adds the current light to or removes the current light from the light
selection.
When in light selection mode, the command Select-Nothing (‘shift-N’) deselects all lights, leav-
ing Qxw in light selection mode; the command Select-All (‘shift-A’) selects all lights; and the
command Select-Invert (‘shift-I’) selects all lights previously not selected, and deselects all lights
previously selected.
The command Select-Lights-in current direction switches Qxw to light selection mode (if it is
not already in that mode) and adds to or removes from the selection those lights which run in
the direction the cursor is currently pointing.
The command Select-Lights-overriding default properties switches Qxw to light selection mode
(if it is not already in that mode) and selects those lights which have been set to override the
default light properties (see Section 12.2).
The command Select-Lights-with answer treatment enabled switches Qxw to light selection
mode (if it is not already in that mode) and selects those lights whose properties have been set
to enable answer treatment (see Section 12.2).
Select-Lights-with double or more unches, Select-Lights-with triple or more unches, Select-
Lights-that are underchecked and Select-Lights-that are overchecked are commands that allow
you to locate those lights so flagged, as described in the discussion of the Statistics dialogue (see
Section 10.2).

11.3 Switching selection mode

In general when Qxw switches between cell and light selection mode as a consequence of one of
the above commands the selection is reset. However, the command Select-Cell mode <> light
mode (‘shift-M’) switches Qxw between selection modes without clearing the selection: if Qxw
is in cell selection mode, it switches to light mode, selecting all lights incident with any selected
cell; and if it is in light selection mode, it switches to cell mode, selecting all cells that form part
of any selected light.
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Cell and light properties and cell
contents

Qxw lets you customise your grid and how it is filled by assigning properties to cells and lights.
In each case there is a set of default properties which can be overridden as required. For ex-
ample, you would normally have the default cell properties set to give black text on a white
background, but you could override this default to to give white text on a red background in
cells whose letters spell out a theme word.
Usually you would first set the default properties (using the command Properties-Default cell
properties or Properties-Default light properties); then select the cells or lights where you wish
to override the defaults using the selection commands described in Chapter 11; and finally use
the Properties-Selected cell properties or Properties-Selected light properties) commands to set
the new properties.

12.1 Cell properties

Figure 12.1 shows the Selected cell properties dialogue. (The Default cell properties dialogue is
the same except that it lacks the ‘Override default cell properties’ option.)
The first section of the dialogue allows you to change the colours used for foreground text, for
corner marks, and for the background of the cell, as well as the font style (normal, bold, italic or
bold italic) for characters entered in the cell.
Next, for each corner you can specify a (short) string to appear there: you can use this, for
example, to distinguish some cells by adding an asterisk or a letter of the alphabet in the top
right corner. The characters allowed in corner marks are letters, digits, and normal punctuation.
If the mark is the special sequence consisting of a backslash followed by a hash character, that
corner will be used to display the light number (if any).
If the mark is the special sequence consisting of a backslash followed by the letter ‘c’ or ‘C’,
then (assuming that the cell is normally checked and that there is only a single character in
the cell) that corner will be used to display a number that depends on the character in the cell.
The mapping from character to number is randomly chosen afresh each time Qxw is run. This
facility makes it easy to produce ‘codeword’-style puzzles.
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Figure: 12.1: The Selected cell properties dialogue

If the mark is the special sequence consisting of a backslash followed by the letter ‘i’ or ‘I’, and
the first (or only) free light passes through that cell, then that corner will be used to display a
number giving the position of the cell within the free light. This makes it possible to highlight a
sequence of letters forming a thematic word in the grid, automatically updating if you change
the path of the free light.
If the mark is the special sequence consisting of a backslash followed by the letter ‘o’ or ‘O’, then
a circle will be drawn around the character or characters entered in that cell. This gives another
way to highlight a thematic word hidden in the grid. This mark can be specified as belonging
to any corner of the cell, with no difference to the visual effect; and the circle is drawn in a half-
intensity version of the specified mark colour. Together, these mean that circles can be combined
with other marks with a large degree of freedom. Circles do not appear in versions of the grid
exported to pure HTML.
The second section of the dialogue allows the cell to be ‘flagged for answer treatment’: this
means that the cell can be dealt with specially when a light passing through it is subject to
answer treatment. For more details see Chapter 14. You can also specify whether lights inter-
secting in the cell must agree (the normal case) or whether the cell is ‘dechecked’, in which case
they need not agree. If the cell is ‘dechecked’ the contributions from the lights passing through
it are shown separately, either side by side (‘horizontal display’) or atop one another (‘vertical
display’).
When the dialogue is called up, it shows the properties of the first selected cell in the grid in
normal reading order. When you click on the ‘Apply’ button, the chosen properties are applied
to all selected cells.

12.2 Light properties

Figure 12.2 shows the Selected light properties dialogue. (As before, the Default light properties
dialogue is the same except that it lacks the ‘Override default light properties’ option.) When
the dialogue is called up, it shows the properties of the first selected light in the grid (in clue
order). When you click on ‘Apply’, the chosen properties are applied to all selected lights.
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Figure: 12.2: The Selected light properties dialogue

The first section of the dialogue allows you to choose which dictionaries are to be used for
filling the light: see Chapter 9. If no dictionaries are selected Qxw will allow any combination
of characters in the light.
The second section lets you enable or disable answer treatment for the light: see Chapter 14.
The third section allows you to choose the ‘entry method’ for the light. Answers can be entered
forwards and/or backwards and may also be cyclically permuted. A further option allows
for any other permutation of the letters in the light. Allowing arbitrary permutations or cyclic
permutations in conjunction with a large dictionary can make filling run slowly and use more
of the computer’s memory.
If ‘with any other permutation’ is ticked then an asterisk is appended to all the results shown in
the feasible list pane (whether or not the light is in fact jumbled), and clicking on these results
does not have any effect.
The fourth section of the Selected light properties dialogue allows a light to be excluded from
the usual consecutive numbering, which can be desirable in crosswords with unclued thematic
entries. The first cell of a light will still receive a number if a number is required for another
light starting in the same cell.
The fifth section of the Selected light properties dialogue allows you to configure the light as
a ‘multiplex light’. This means that the light can be filled in more than one way, treating cell
contents strings that contain more than one letter as alternative single-letter fills rather than as
a single multi-letter fill. The number of alternatives is determined by the longest cell contents
string over the light.
If you make changes to the grid after having set some light properties, Qxw will try to make an
intelligent decision about which lights should have which properties. Although it does its best,
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it is possible that Qxw’s view on this will disagree with yours. The general rule is that Qxw
attaches light properties to the cell containing the first letter of a light. Check (with the help of
Select-Lights-overriding default properties) that things are as you expect.

12.3 Cell contents

Normally the contents of a cell can be changed by simply moving the cursor to the cell and
either pressing the desired letter on the keyboard or pressing ‘Tab’ to remove a letter. When a
cell contains more than one character, however, the cell contents are changed using a dialogue:
see Figure 12.3.

Figure: 12.3: The Cell contents dialogue

This dialogue automatically appears when (by pressing a letter or digit key or ‘Tab’) you attempt
to change the contents of a cell that does not contain exactly one character; it is also available via
the menu item Edit-Cell contents (‘control-I’). If the cell is normally checked you are prompted
to enter the characters that are to occupy the cell; if it is dechecked (see under ‘Cell properties’
above) you are prompted for the (independent) contributions from the cell to lights in each
direction.
In each case a full stop (‘.’) must be used to indicate characters that are not yet decided upon
(including in multiplex lights). For clarity the grid display will show these full stops in all cases
except where a cell is normally checked and only contains a single character.
Where you have several instances of a cell containing more than one character, it is sometimes
easier to use the Light contents dialogue (Edit-Light contents, ‘control-L’) than the Cell contents
dialogue.
Furthermore, it is possible to partially restrict the characters the automatic filler is allowed to
use in a cell. This is done by entering a pattern rather than a single character or a full stop. For
example, entering the pattern [aeiou] would force the cell to contain a vowel; the pattern [^s]

would allow any character except ‘s’; the pattern [a-m][a-rt-z] would allow a sequence of
two characters, the first any letter from ‘a’ to ‘m’ and the second any letter except ‘s’; and @#.

would allow a sequence of three characters, the first being a vowel, the second a consonant, and
the third unrestricted.
One use of this facility is to prevent the filler using words ending in ‘s’ at the right-hand or
bottom edges of the grid.
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Free lights

‘Free light’ is the term Qxw uses to refer to a light consisting of an arbitrary sequence of cells
in the grid that is constrained to form a word (or treated word) just like the normal lights. For
example, this allows you to create lights that run along the diagonals or around the periphery
of a square grid or take knight’s tours around the grid. As the examples in the first part of this
guide show, free lights can also be used in conjunction with specially-constructed dictionaries
to make more complicated thematic puzzles.

13.1 Making free lights

To create a new free light move the cursor to the first cell that is to be part of it and select the
menu item Edit-Free light-Start new. A small orange dot will appear. This is the first cell of the
new free light, and it is automatically selected. Move the cursor to the desired second cell and
select the menu item Edit-Free light-Extend selected (‘control-E’). An orange dot will appear in
this second cell, joined by a thin orange line to the first. Continue using the menu item Edit-
Free light-Extend selected (‘control-E’) to add all the desired cells one by one. The free light
appears as a series of small dots linked by thin lines. The first dot in the free light is square, the
remainder circular: this is so that you can see in which direction the light runs.
If you make a mistake you can remove the last cell from the free light using the menu item
Edit-Free light-Shorten selected (‘control-D’). or delete the light altogether using Edit-Free light-
Delete selected.

13.2 Selecting and editing free lights

As mentioned above, the free light under construction is automatically selected (i.e., displayed
in orange). For clarity, free lights are not usually displayed in the grid if not selected. However,
you can display them by moving the cursor to a cell through which a free light passes and
changing the cursor direction (by pressing ‘Page Up’, ‘Page Down’ or ‘slash’, or by clicking with
the left mouse button). The cursor will cycle through the usual directions and then through the
free lights that visit that cell, displaying them in grey. The feasible word list will update to show
you what words can be used in the free light.
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When a free light is displayed in grey the cells that form it can be edited in one step using the
Light contents dialogue (Edit-Light contents, ‘control-L’).
When a free light is displayed in grey it can be selected using the menu item Select-Current
light (‘shift-L’). Alternatively, it is possible to cycle through the free lights, selecting them in
turn, using the menu item Select-Free light (‘shift-F’). Using the menu item Select-All (‘shift-A’)
when any free light is selected will select all the free lights.
When a single free light is selected its path can be modified directly using the menu item Edit-
Free light-Modify selected. This calls up a dialogue in which the coordinates of the cells visited
by the free light are displayed and can be edited. It is also possible to create a coordinate list
externally to Qxw and paste it into this dialogue. Each line in the list identifies a single cell in
the grid by its horizontal and vertical coordinates (or angular and radial coordinates in the case
of circular grids), counting from zero. The elements of the coordinate pair must be separated by
a space or comma.
The paths of all the free lights can be written to a file using the menu item File-Export free
light paths. The format is: one coordinate pair per line, separated by a space, with a blank line
between each sequence of coordinates representing a single free light. A command File-Import
free light paths is available to read in files in this format.
Properties can be set on free lights, just like normal lights, by selecting them and then using the
Light properties dialogue: see Section 12.2.
When a free light visits a cell containing more than one character, all characters in the cell con-
tribute to the free light, even if the cell is ‘dechecked’. This means that a free light running
through such a cell will result in a constraint being applied to that cell’s contents.



Chapter 14

Answer treatments

14.1 Built-in answer treatments

Qxw contains a variety of built-in answer treatments. This following sections describe in detail
how each behaves. In each case, the treatment is thought of as transforming a word (which will
have been obtained from a dictionary file) called the ‘answer’ into the ‘light’ for entry in the
grid. The answer treatments make use of up to two ‘messages’, which in a thematic crossword
would typically be hidden quotations or further instructions to the solver.

14.1.1 Playfair cipher

This answer treatment uses only characters from the first message, which is used to make the
keyword for a Playfair square. All ‘J’s in the keyword are replaced by ‘I’s (if ‘I’ is present in
the current alphabet). All but the first occurrence of each character is deleted. The characters of
the message that remain, followed by the remaining characters of the alphabet (except ‘J’, if ‘I’
is present in the alphabet) in order, are written to the Playfair square in normal reading order
until it is full or the alphabet is exhausted. If the alphabet, possibly after reduction by removal
of ‘J’, consists of more than 25 characters, the excess characters are discarded.
All ‘J’s in the answer are replaced by ‘I’s if ‘I’ is present in the current alphabet. The answer is
then split into pairs of characters which are encoded using the Playfair square in the usual way.
If (a) a pair consists of the same character twice; or (b) either character of the pair is one of the
excess characters discarded in the construction of the square; or (c) encoding the pair would
involve accessing a cell of the Playfair square that is not filled because there are not enough
characters in the alphabet, then the pair is left unencoded.
If an answer has odd length then its last character is left unencoded.

14.1.2 Substitution cipher

This answer treatment uses only characters from the first message. Each character in the answer
is considered in turn. If it is classed as a ‘symbol’ (see Section 9.9) then it is left unchanged.
Otherwise, its position within its character class is determined, and this value is used to index
into the message to find a replacement character. If the message is too short to allow this, the
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character is left unchanged.
For example, with the ‘Roman plus digits A-Z 0-9’ alphabet, each ‘A’ or ‘0’ in the answer is
replaced by the first character of the message; each ‘B’ or ‘1’ by the second character; each ‘C’
or ‘2’ by the third character; and so on.

14.1.3 Fixed Caesar/Vigenère cipher

This answer treatment uses the first message as a keyword for a Vigenère cipher. Letters are
always encoded as letters and digits as digits. Symbols are left unchanged. If the message is
empty, the answer is left unchanged.
The positions (counting from zero) of corresponding characters of answer and keyword within
their respective character classes are determined, and then added together. The result is con-
verted back to a character by indexing into its character class, wrapping around if necessary.
For example, with the ‘Roman plus digits A-Z 0-9’ alphabet, we have A ≡ 0, B ≡ 1, C ≡ 2 and
so on. Then A + A = A, C + F = H, N + N = A, Y + Z = X, Q + 3 = T and 3 + Q = 9.
If the keyword is shorter than the answer it is repeated as necessary. In particular, if the keyword
consists of one character, the result is a fixed Caesar cipher. Using the keyword ‘N’ with a
Roman alphabet results in the rot13 cipher.

14.1.4 Variable Caesar cipher

This answer treatment assigns characters from the first message to lights. One character is
assigned to each light that has answer treatment enabled, in clue order. The character is used to
derive an offset for a Caesar cipher, the same offset being used throughout a single light. The
encoded character is calculated in the same way as for the fixed Caesar cipher above.
If the message is empty, answers are left unchanged; if the length of the message is less than the
total number of lights with answer treatment enabled, the message is repeated as necessary.
For example, with the ‘Roman plus digits A-Z 0-9’ alphabet, a message character of ‘A’ or ‘0’
leaves an answer unchanged; a message character of ‘B’ or ‘1’ advances the characters of an
answer by one place (taking e.g. ‘LAZY’ to ‘MBAZ’ and ‘1966’ to ‘2077’); a message character
of ‘C’ or ‘2’ advances the characters of an answer by two places (taking ‘LAZY’ to ‘NCBA’ and
‘1966’ to ‘3188’); and so on.
This answer treatment can take advantage of the discretionary modes of the filler.

14.1.5 Misprint (correct letters specified)

This answer treatment uses only characters from the first message. Each light with answer
treatment enabled uses one character from the message. Lights are produced from answers by
changing an occurrence in the answer of the character from the message to a different character.
This means that a single answer word can give rise to two or more different lights, or, equally,
may give rise to no lights at all.
If the message length is less than the total number of lights with answer treatment enabled,
excess answers are left unmodified.
This answer treatment can take advantage of the discretionary modes of the filler.
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14.1.6 Misprint (incorrect letters specified)

This answer treatment uses only characters from the first message. Each light with answer
treatment enabled uses one character from the message. Lights are produced from answers by
changing a character in the answer to the (different) character from the message. This means
that a single answer word can give rise to two or more different lights, or, equally, may give rise
to no lights at all.
If the message length is less than the total number of lights with answer treatment enabled,
excess answers are left unmodified.
This answer treatment can take advantage of the discretionary modes of the filler.

14.1.7 Misprint (general, clue order)

This answer treatment uses both messages in their raw form, before punctuation is removed.
Each light with answer treatment enabled, in clue order, uses one character from each message.
Lights are produced from answers by changing an occurrence of the character from the first
message to the character from the second message. This means that a single answer word can
give rise to two or more different lights, or, equally, may give rise to no lights at all.
If the character from the first message is ‘.’ then any character in the answer can be changed
to the character from the second message to make the light. If the character from the second
message is ‘.’ then an occurrence in the answer of the character from the first message can be
changed to any character to make the light. If the characters from both messages are ‘.’ the
answer is left unchanged.
Other than when specifically instructed (i.e., when the characters from the two messages are the
same), Qxw will not ‘change’ a character to itself.
A message whose length is less than the total number of lights with answer treatment enabled
is considered to be extended with ‘.’ characters.

14.1.8 Delete single occurrence of character (clue order)

This answer treatment uses only characters from the first message. Each light with answer
treatment enabled, in clue order, uses one character from the message. For each occurrence of
that character in a candidate answer word, a light is constructed by deleting that occurrence. A
single answer word can thus give rise to two or more different lights.
If the length of the message is less than the number of lights with answer treatment enabled,
lights without a specified character to be deleted are left unchanged.
This answer treatment can take advantage of the discretionary modes of the filler.

14.1.9 Letters latent: delete all occurrences of character (clue order)

This answer treatment uses only characters from the first message. Each light with answer
treatment enabled, in clue order, uses one character from the message. If a candidate answer
word does not contain that character, it is discarded; otherwise a light is constructed by deleting
every occurrence of the character from the answer.
If the length of the message is less than the number of lights with answer treatment enabled,
lights without a specified character to be deleted are left unchanged.
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This answer treatment can take advantage of the discretionary modes of the filler.

14.1.10 Insert single character (clue order)

This answer treatment uses only characters from the first message. Each light with answer
treatment enabled, in clue order, uses one character from the message. A series of lights is con-
structed from each candidate answer word by inserting that character at each possible position
within the word, including at either end.
If the length of the message is less than the number of lights with answer treatment enabled,
lights without a specified character to be inserted are left unchanged.
This answer treatment can take advantage of the discretionary modes of the filler.

14.2 Filler discretionary modes

Qxw offers three alternative methods by which characters in answer treatment messages can be
allocated to the lights that have answer treatment enabled.
The normal case is called ‘in clue order, first come first served’: the letters are allocated to the
lights that have answer treatment enabled in clue order, and this allocation is fixed. If there
are more such lights than characters in the message the behaviour depends on the particular
treatment in question.
The second alternative is called ‘in clue order, at discretion of filler’. If there are as many char-
acters in the message as lights to be treated, this behaves in the same way as ‘first come first
served’ mode. However, if there are fewer, then the filler will distribute them as it sees fit across
the lights, preserving their order, and leaving as many lights as required untreated.
The third alternative is called ‘in any order, at discretion of filler’. In this mode the filler will
distribute the characters in the message as it sees fit among the lights that have answer treatment
enabled without necessarily preserving their order. If there are fewer characters in the message
than lights to be treated then the filler will leave as many lights as required untreated.
The allocation of characters to lights is subject to the constraint string entered in the Answer
treatment dialogue. The string specifies what message characters are acceptable for each light
in clue order. The message character can be any character from the current alphabet or the
special character dash (‘-’), which indicates that the light is not to be treated. The symbol ‘.’ (full
stop) stands for any character except dash, and the symbol ‘?’ (question mark) stands for any
character including dash. A set of allowable message characters can be specified using a syntax
along the lines of ‘[A-DQ-Z-]’, and Qxw will use this syntax if Autofill-Accept hints (‘control-A’)
is used on a partially-filled grid: the interactive assistance algorithm will often be able to prove
quickly that some allocations are infeasible.
The constraint string is considered to be padded with question mark characters at the end if
necessary.
Note that the allocation of characters to lights is an integral part of the filler’s algorithm: it does
not simply choose an arbitrary allocation and fix it before embarking on the fill. Allowing the
filler discretion in allocating message characters can turn an infeasible fill into a feasible one; on
the other hand, giving the filler more freedom can also make it run more slowly.
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14.3 Plug-in answer treatments

One of Qxw’s most powerful features is its ability to use customised answer treatments in the
form of ‘plug-ins’, which are small external programs that Qxw loads on request.
This section describes the plug-in system in detail. Initially we will consider only the case where
the current alphabet comprises the letters ‘A’ to ‘Z’ and/or the digits ‘0’ to ‘9’; the extensions to
the plug-in system to cover other alphabets are discussed in Section 14.3.1.
If ‘Custom plug-in’ has been chosen as the answer treatment method, Qxw will call the plug-in
when building the feasible word list for each light with answer treatment enabled. This happens
every time the user makes a change to the grid. Qxw calls the plug-in once for each word in the
set of dictionaries selected for the light in question, passing in the word to be treated along with
other information that the plug-in might need.
As you can see, a plug-in might get called hundreds of thousands or even millions of times
whenever the user makes a change to the grid. Although Qxw will interrupt its feasible light
list building to respond to a user action, it is nevertheless important that plug-in code execute
as quickly as possible.
The plug-in takes the form of a C program. Under Linux, this program can be compiled using
gcc with its -shared and -fPIC options. For Windows compilation options see Section 14.4.
The resulting object file (which conventionally has a ‘.so’ suffix under Linux and a ‘.dll’ suffix
under Windows) is dynamically loaded and unloaded by Qxw as necessary.
The program must provide a function called treat(). The function is passed a candidate an-
swer word (as a char*), entirely in capitals and with no punctuation or spaces. It is expected to
make a local modified version of this string (the ‘treated answer’), again entirely in capitals and
with no punctuation or spaces. The function must then call treatedanswer() with the modi-
fied string, which will be considered as a candidate for addition to the feasible light list. The
function treatedanswer() returns a non-zero value if an error occurs, and this value should be
passed back as the return value of treat().
In many cases your treat() function will need to call treatedanswer() exactly once, in which
case the function can simply end return treatedanswer(...);. If the treatment is such that
an answer can give rise to several different lights, treat() will need to call treatedanswer()
more than once, and the returned value must be checked each time and returned if non-zero.
In addition, the plug-in may provide a function called init(), which is called immediately
after the plug-in is loaded, and a function called finit(), which is called immediately before
the plug-in is unloaded. The plug-in is reloaded whenever the user clicks ‘Apply’ in the Answer
treatment dialogue or in the Alphabet dialogue, and so the init() function is a suitable place
to do any relatively time-consuming pre-processing (such as building encoding tables) that the
plug-in requires.
By including the header file qxwplugin.h a plug-in can access the following variables.
int clueorderindex, the sequence number of the current light in clue order, counting from
zero. Only lights with answer treatment enabled are counted.
int lightlength, the length of the current light in characters.
int lightx, the x-coordinate of the start position of the current light (or angular position for
circular grids), counting from zero.
int lighty, the y-coordinate of the start position of the current light (or radial position for
circular grids, measured inwards from the perimeter), counting from zero.
int lightdir, the direction of the current light. For plain rectangular grids, the directions (in
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order counting from zero) are ‘Across’ and ‘Down’; for hex grids with vertical lights ‘Northeast’,
‘Southeast’ and ‘South’; for hex grids with horizontal lights ‘East’, ‘Southeast’ and ‘Southwest’;
and for circular grids ‘Ring’ and ‘Radial’. Free lights are assigned lightdir values from 100
upwards.
int*checking, a pointer to an array of lightlength ints, one for each character in the light.
Each entry is the degree of checking experienced by that character. An ‘unchecked’ character
has a checking value of 1, and a normally checked character has a checking value of 2. Higher
checking values can arise when using merged cells, hexagonal grids or free lights.
int*gridorderindex, a pointer to an array of lightlength ints, one for each character in the
light. If the cell containing that character is not flagged for answer treatment in the Cell prop-
erties dialogue then the value is set to −1. Otherwise the value is set to the index, in normal
reading order and counting from zero, of that cell among all flagged cells in the grid. For exam-
ple, suppose a vertical light is five cells long and has its second and last cells flagged, and that
these two cells are respectively the fourth and ninth flagged cells in the grid in reading order.
The array will then read −1, 4,−1,−1, 9.
char*treatmessage[], an array of two strings containing the messages as specified by the user
in the Answer treatment dialogue.
char*treatmessageAZ[], an array of two strings containing the messages specified by the user
in the Answer treatment dialogue with only letters preserved, converted to capitals ‘A’ to ‘Z’.
char*treatmessageAZ09[], an array of two strings containing the messages specified by the
user in the Answer treatment dialogue with only letters and digits preserved and all letters
converted to capitals ‘A’ to ‘Z’.
char msgchar[], an array of two characters, one from each of the two messages specified by
the user in the Answer treatment dialogue.
char msgcharAZ[] is analogous to msgchar[], but based on treatmessageAZ[] rather than
treatmessage[]. Only letters and the character ‘-’ can appear in msgcharAZ[].
char msgcharAZ09[] is analogous to msgchar[], but based on treatmessageAZ09[] rather than
treatmessage[]. Only letters, digits and the character ‘-’ can appear in msgcharAZ09[]. If the
allocation order for a message is ‘in clue order, first come first served’ then msgcharAZ09[i] is
the same as treatmessageAZ09[i][clueorderindex], or the character ‘-’ if there are not enough
characters in treatmessageAZ09[i]. If one of the other allocation orders is used, the situation
is more complicated: see below.
char light[], a temporary storage area with enough space for the longest possible light (MXLE
characters) plus a zero termination byte. Plug-ins can use this area to construct the treated
answer before passing it back to Qxw.
Plug-ins also have access to a function int isword(const char*light) which checks whether
a given string (entirely capitals and digits, with no punctuation or spaces) is a word in any of
the dictionaries selected for that light.
Caution: if a plug-in crashes, for example as a result of accessing storage before the beginning
or after the end of the string passed to it, Qxw will also crash. Save your work before experi-
menting with plug-ins!

14.3.1 Writing a plug-in for a non-Roman alphabet

If your plug-in only has to deal with (at most) the letters ‘A’ to ‘Z’ and/or the digits ‘0’ to ‘9’
then you can write it in terms of the variables and functions listed above. If, however, it has to
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deal with accented or other characters (more specifically, any character not in the ‘7-bit ASCII’
set) then it will need to make use of the additional variables and functions described below; and
unfortunately your program may end up a little more complicated.
The extra functions deal in two different representations of characters, and you can choose
whichever is the more convenient for your purposes. In the first, each character is represented
by an ordinary unsigned integer which is its Unicode code point. The functions and variables
that use this representation have the letter ‘U’ in their names. For convenience, the header file
qxwplugin.h includes a typedef that lets you write the type as uchar instead of unsigned int.
The other representation uses ‘internal character codes’, or ICCs, which are stored using the
char type, and can take on values from 1 to 60. These are the numbers shown to the left of
each row in the Alphabet dialogue. Observe that the value zero is not used; moreover, when
Qxw manipulates strings of internal character codes it appends a zero termination byte. The
consequence of this is that you can use the standard C string manipulation functions on them,
and this can considerably simplify the writing of a plug-in. The functions and variables that use
this representation have the string ‘ICC’ in their names.
In most cases you will find it easiest to write a plug-in in terms of internal character codes. This
is also usually the most computationally efficient approach, and all the built-in treatments are
written in this way.
For backwards compatibility with previous versions of Qxw, the argument to the treat() func-
tion is represented as UTF-8, as are the strings in the array treatmessage[]. In this encod-
ing strings comprising exclusively 7-bit ASCII characters are unchanged; but other charac-
ters are represented in a slightly more complex way. To save you from having to deal with
UTF-8 conversions, Qxw also makes the untreated answer available in the variables const

char*answerICC (an array of bytes using internal character codes) and const uchar*answerU

(an array of unsigned integers using Unicode code points, also referred to as uchars), in both
cases zero-terminated.
You can only use int treatedanswer(const char*light) to submit the result of your answer
treatment if it contains only characters that are 7-bit ASCII, or you can pass your non-7-bit-
ASCII result encoded in UTF-8. More simply, you can call either int treatedanswerICC(const

char*light), which requires a zero-terminated string of internal character codes, or, if you have
a zero-terminated string of Unicode code points, int treatedanswerU(const uchar*lightU).

14.3.2 Treatment messages when using a non-Roman alphabet

The array char*treatmessageICC[] contains the same information as char*treatmessage[],
but using internal character codes and with any characters not representable in the current
alphabet deleted.
The array uchar*treatmessageU[] contains the same information as char*treatmessageICC[]
but in the form of uchars and with characters are mapped to their ‘Entry’ representative speci-
fied in the Answer treatment dialogue.
Likewise, the array char*treatmessageICCAZ[] corresponds to char*treatmessageICC[], but
with everything that is not a letter (as defined by its character classification: see Section 9.9)
deleted.
The array uchar*treatmessageUAZ[] corresponds to char*treatmessageICCAZ[] with charac-
ters mapped to their ‘Entry’ representative specified in the Answer treatment dialogue.
The array char*treatmessageAZ[] corresponds to uchar*treatmessageUAZ[], but with any
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characters not representable using 7-bit ASCII deleted.
The array char*treatmessageICCAZ09[] corresponds to char*treatmessageICC[], but with
everything that is not a letter or digit (as defined by its character classification) deleted.
The array uchar*treatmessageUAZ09[] corresponds to char*treatmessageICCAZ09[], with
characters are mapped to their ‘Entry’ representative specified in the Answer treatment dia-
logue.
The array char*treatmessageAZ09[] corresponds to uchar*treatmessageUAZ09[], but with
any characters not representable using 7-bit ASCII deleted.
The arrays char msgchar[], char msgcharAZ[] and char msgcharAZ09[] are generally not
useful when writing plug-ins that deal with non-Roman alphabets. Instead, use the array char

msgcharICC[], which contains a character extracted from char*treatmessageICC[]; or uchar
msgcharU[], which contains a character extracted from uchar*treatmessageU[]. Similarly, in-
stead of char msgcharAZ[] use char msgcharICCAZ[] or uchar msgcharUAZ[]; and instead of
char msgcharAZ09[] use char msgcharICCAZ09[] or uchar msgcharUAZ09[].
uchar lightU[] is a temporary storage area with enough space for the longest possible light
(MXLE characters) represented using uchars, plus zero termination. Plug-ins can use this area to
construct the treated answer before passing it back using int treatedanswerU(lightU).
The function isword(const char*light) takes an argument encoded in UTF-8 (and hence
works for strings that contain exclusively 7-bit ASCII). And, as you might expect, the functions
int iswordU(const uchar*lightU) and int iswordICC(const char*light) are also avail-
able.
The function int ICCtoclass(char c) takes an ICC as argument and returns 0 if Qxw classifies
that character as alphabetic, 1 if Qxw classifies that character as numeric, 2 if Qxw classifies that
character as a symbol, and −1 otherwise.
The function char uchartoICC(int c) converts a uchar to its corresponding internal charac-
ter code, returning zero if there is no representative in the current alphabet. Conversely, uchar
ICCtouchar(char c) converts an internal character code to the uchar value for its ‘Entry’ rep-
resentative specified in the Answer treatment dialogue, or zero if no representative is specified.
ICCtouchar(ICC DASH) returns the Unicode for ‘-’.
The function void printICC(char c) prints out a single character represented as an ICC. The
function void printICCs(const char*s) prints out a string of characters represented as ICCs.
The functions void printU(uchar c) and void printUs(const uchar*s) do the analogous
thing for uchars. These functions are only intended to be used when debugging a plug-in.

14.3.3 Writing a plug-in to work with discretionary fill modes

If your plug-in is to be used in conjunction with discretionary fill modes, you must write it
to depend on the variable char msgcharAZ09[], or, if you are using a non-Roman alphabet,
on char msgcharICC[] or uchar msgcharU[]. The treatment code must not depend on the
treatmessage[] strings, and the other variables are not guaranteed to contain useful informa-
tion.
For each light with answer treatment enabled the plug-in will be called once with each feasible
combination of characters from the current alphabet and ‘-’ characters in msgcharAZ09[], char
msgcharICC[] and uchar msgcharU[].
If the length of the treatment message is less than the number of lights with answer treatment
enabled then it is (in effect) padded to the correct length using ‘-’ characters. Your plug-in
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should therefore normally interpret this character to mean ‘this answer is not to be treated’,
although this is not compulsory. The internal character code for ‘-’ is defined in qxwplugin.h as
ICC DASH.
Speed of execution of the plug-in is particularly critical if there are many feasible combinations
of message characters; also, long lists of feasible words can result, consuming large amounts of
the computer’s memory.
If both messages are used in an answer treatment, their character allocation modes can be set
independently. Furthermore, the filler will in general choose different allocations for the two
messages.

14.4 Compiling plug-ins under Windows

This guide contains a number of example plug-ins, and shows how they can be compiled under
Linux using the gcc C compiler. Unfortunately, Windows does not come with a ready-made
C compiler. There are several cost-free options, but none is entirely straightforward to use.
One option is to download and install Cygwin or MinGW, both of which provide a command
line gcc C compiler that can be used in almost the same way as the Linux version. The key
difference is that the shared object file under Windows will be a dynamic-linked library and
will have a .dll file extension.
Alternatively, Microsoft provide a comprehensive range of programming and development
tools called Visual Studio, the Community version of which is free to download and use. The
rest of this chapter runs through the steps needed to create a Qxw plug-in using Visual Studio
2019. If you have Visual Studio 2017 already installed, then the steps are similar.

14.4.1 Using Microsoft Visual Studio

The first stage is to download and install Visual Studio 2019 Community from the Microsoft
Visual Studio website. The first time you launch Visual Studio 2019 Community, you will need
to sign in with a Microsoft account: you can create a new one if needed.
Launch Visual Studio and select Create a new project. Search for and select the ‘Empty project’
template. Give your project a suitable name and click the ‘Create’ button. This will create the
project in your C:\Users\username\source\repos folder.
The next stage is to configure your project, and to make sure it can find and link to the Qxw
code library. Select Project-Properties from the menu, and select ‘All Configurations’ from the
drop-down menu. You will need to make a number of changes to the configuration. First, under
General-Configuration Type select ‘Dynamic Library (.dll)’. Next select VC++ Directories-Edit
Include Directories and add in the Qxw application folder (normally something like C:\Program
Files (x86)\Qxw); then Edit Library Directories and again add the Qxw application folder.
Finally, select Linker-Input, edit ‘Additional Dependencies’ and enter Qxw.lib.
Now you are ready to write your code. Right-click on Source Files in Solution Explorer, and Add
New Item. In the window that opens, select C++ File but make sure you give it a name that has
a .c file extension. This will ensure that the project is compiled as C rather than C++ code.
You can now type in your code. A good starting point is simply to copy and paste one of the
examples from this guide.
The final step is to compile and build your project. Click on Build and Build Solution from the
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menu and, if all is well, your project will compile and produce a .dll file. This will sit in either
the project Debug or Release folder, depending on which mode was selected on the menu bar
(usually Debug to start with). Either mode will produce a .dll file that will run with Qxw; the
‘Release’ version will run faster.
You should unload the plug-in from Qxw before recompiling, for example by temporarily set-
ting the answer treatment to something other than ‘Custom Plug-in’.

14.4.2 Debugging a plug-in under Microsoft Visual Studio

You can debug a plug-in using the following steps:
1. Start Qxw and load or create your crossword.
2. In Visual Studio use the ‘Debug’ configuration, select Debug-Attach To Process... from the
menu and attach to Qxw.exe.
3. Set a breakpoint at the beginning of the treat() function in your plug-in.
4. Set the answer treatment to ‘Custom Plug-in’ and click ‘Apply’.
The feasible light generation process should then halt in your code each time it calls treat()

with a candidate word.



Chapter 15

Decks

15.1 Introduction to decks

You can run Qxw in ‘batch mode’ (i.e., non-interactively) from the command line, supplying
it with a problem for its filler to solve. In this mode Qxw does not start up its graphical user
interface. The file specifying the problem is called a ‘deck’, after the name used for a set of
punched cards used to hold data or programs for early computers. A Qxw deck is a plain text
file, conventionally with extension .qxd.
To run Qxw in batch mode on a deck, use the -b option on the command line. Under Linux the
command
qxw -b cube.qxd

will cause Qxw to load the file cube.qxd, run its filler on the problem specified on that file,
and, if a fill is found, output the result. Qxw sets a return code of 0 if a fill is found, 4 if no fill
is found, and 16 if an error is encountered when processing the deck: this, coupled with the
straightforward file format of the deck, makes is easy to use Qxw as part of a script to automate
the exploration of grid designs.
If Qxw is run from a Windows command prompt the system will by default launch it in such
a way that all output is discarded. To capture the output it is necessary to ‘redirect’ it to a file.
From the command prompt, change to the directory containing your deck file and issue the
following command.
"C:\Program Files (x86)\Qxw\Qxw.exe" -b cube.qxd >output.txt 2>errors.txt

That will cause the results to be written to the file output.txt and any error messages to
errors.txt, also in the current directory.
You can add -a and -d options to the command line to set the initial alphabet and dictionaries
in just the same way as when running Qxw interactively, although these can be overridden by
directives in the deck (see Section 15.3.1). When running in batch mode Qxw does not load a
‘preferences’ file: again, you can configure relevant preferences using directives in the deck.
Blank lines in a deck, and lines whose first non-space character is hash (‘#’) are ignored. The
latter can be used to introduce comments into a deck should you be so moved.

80
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15.2 Entries and words

At its heart, Qxw’s filler works on entries and words. An entry can hold a single character from
the current alphabet. In a deck each entry is given a name, which can be any sequence of letters,
digits, underscore (‘ ’) and the dollar sign (‘$’). Entry names are case sensitive and may consist
of up to 31 characters.
A word consists of a sequence of entries, and is specified as a single line in the deck. In the
simplest case, the filler’s job is to assign a character from the current alphabet to each entry such
that each sequence of entries comprising a word is a string found in the available dictionaries.
Consider the following two-line deck.
ent0 ent1 ent2

ent2 ent1 ent0

Here ent0, ent1 and ent2 are the names of three entries, and so the filler will be looking for
a set of three characters. The first line of the deck specifies a word comprising those three
entries in order; the second line of the deck specifies a word comprising those three entries in
reverse order. So the problem the filler has to solve is to find a three-letter word in the available
dictionaries whose reverse is also in the available dictionaries. Run Qxw on this deck and a
typical result would be as follows.
W0 ERA

# era

W1 ARE

# are

This report means that Qxw’s filler has found that the assignment of ‘E’ to entry ent0, ‘R’ to
entry ent1 and ‘A’ to entry ent2 results in both the forward and reverse sequences being words,
labelled as ‘W0’ and ‘W1’ in the output. The lines starting ‘#’ give the forms of the words
found in the dictionaries (like the entries in the feasible word list display when using Qxw
interactively).
In the example deck shown in Figure 15.1 the sixteen entries are labelled from ‘00’ to ‘15’. If you
look at the pattern of entries forming the words you will see that the problem specified by this
deck is to find a four-by-four word square. Typical output from running Qxw on this deck is
shown in Figure 15.2.

00 01 02 03

04 05 06 07

08 09 10 11

12 13 14 15

00 04 08 12

01 05 09 13

02 06 10 14

03 07 11 15

Figure 15.1: Deck to generate a four-by-four word square

Now suppose you wanted to create a four-by-four word square where the words running across
and down are the same. Although you can set this up in Qxw interactively using free lights, it
is more straightforward in this instance to create a deck. Instead of sixteen independent entries
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W0 HULL

# Hull, hull

W1 HALT

# halt

W2 ASIA

# Asia

W3 USER

# user

W4 LEEK

# leek

W5 LIEU

# lieu

W6 TRUE

# true

W7 LAKE

# lake

Figure 15.2: Typical result from word square deck

there are now only ten, as those below the leading diagonal of the square must be the same as
their counterparts reflected in that diagonal; and of course there are now only four words to be
found. A suitable deck is shown in Figure 15.3.

00 01 02 03

01 04 05 06

02 05 07 08

03 06 08 09

Figure 15.3: Deck to generate a symmetrical four-by-four word square

15.2.1 Initialising entries

You can constrain which characters are allowed in certain entries by adding an ’initialiser’.
An initialiser takes the form of an equals sign (‘=’) followed by a series of characters (with no
intervening space), and can appear after any entry in a word. If an initialiser consists of a single
character, then it specifies that the entry before it must be set to that character. So, if we modify
our simplest example above as follows:
ent0 =J ent1 ent2

ent2 ent1 ent0

then the first letter in the first word is forced to ‘J’, and the filler might find the following solu-
tion.
W0 JAR

W0 # jar

W1 RAJ

W1 # raj

If an initialiser consists of more than one character, then it constrains more than one of the



15.3. DIRECTIVES 83

previous entries in that word. For example, if the first line of the word square example were
changed to read
00 01 02 03 =MARK

then Qxw would look for word squares reading ‘MARK’ across the top.
Initialisers can also contain letter choices using the same syntax as in the Cell contents dialogue:
see Section 12.3. So for example you could write
00 01 02 03 =[LM]@RK

and then, depending on your available dictionaries, the top row of the word square might read
LARK, LURK, MARK, MORK or MURK.

15.3 Directives

Directives are used in a deck to control various aspects of how the filler goes about its job. They
cover many of the same functions as the various dialogues available in interactive mode. Each
directive in a Qxw deck occupies a line by itself, and always starts with a full stop (‘.’) character;
directives—indeed, any line in a Qxw deck—can be indented by spaces or tabs if desired. Each
directive has two forms: a fully spelled out form and a two-character abbreviated form. Both
are case-insensitive. For clarity we will use the full forms in capitals in the examples here.
Directives are divided into two types: global directives, which take effect over the whole of the
deck and which must be specified at the beginning of the deck; and local directives, which only
take effect over a subset of words in the file.

15.3.1 Global directives

The .ALPHABET directive (short form .AL) specifies the alphabet to be used, using one of the
abbreviations listed in Section 9.6. For example,
.ALPHABET AZ09

sets the alphabet to be the Roman letters A–Z plus the digits 0–9.
The .DICTIONARY directive (short form .DI) specifies a dictionary to be loaded. It is followed
by a dictionary slot number (a digit from 1 to 9) and then the rest of the line gives the filename.
So for example
.DICTIONARY 3 /usr/share/dict/words

will cause dictionary slot 3 to use the file /usr/share/dict/words. This has equivalent ef-
fect to supplying that filename under ‘File’ in the Dictionaries dialogue: see Chapter 9. The
‘File filter’ and ‘Answer filter’ strings can be set using the .FILEFILTER (short form .FF) and
.ANSWERFILTER (short form .AF) directives, which have the same syntax. So you might say
.DICTIONARY 3 /usr/share/dict/words

.ANSWERFILTER 3 a.*a

to select only words that contain at least two ‘a’s. Single-entry dictionaries can also be created
using the .ANSWERFILTER filter directive without supplying a dictionary filename or file filter.
.DICTIONARY 1

.FILEFILTER 1

If the deck does not contain any .DICTIONARY, .FILEFILTER or .ANSWERFILTER directives then
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Qxw will attempt to find a suitable dictionary to populate slot 1 in the same way as it does in
interactive mode.
The .RANDOM directive (short form .RA) sets the degree of randomness used in the filling algo-
rithm. It is equivalent to the setting under ‘Autofill preferences’ in the Preferences dialogue.
The directive
.RANDOM 0

forces a deterministic fill, so that supplying the same problem to the filler will always yield the
same result;
.RANDOM 1

introduces a small amount of randomness; and
.RANDOM 2

introduces a high degree of randomness. The default in batch mode is that fills are deterministic.
The .UNIQUE directive (short form .UN) specifies whether duplicate answers and lights are al-
lowed in the fill. It is equivalent to the setting under ‘Autofill preferences’ in the Preferences
dialogue. The directive
.UNIQUE 0

allows duplicates, while the directive
.UNIQUE 1

prevents duplicates. The default in batch mode is that duplicates are not allowed.
The remaining global directives are concerned with configuring an answer treatment. You may
find it helpful to experiment first with using the answer treatment facilities interactively and
to compare the directives with the options provided in the Answer treatment dialogue (menu
item : Autofill-Answer treatment). The behaviour of answer treatments is described in detail in
Chapter 14.
The .TREATMENT directive (short form .TR) is followed by a number that specifies which answer
treatment is to be used according to the following table.

Treatment number Description
0 None (default)
1 Playfair cipher
2 Substitution cipher
3 Fixed Caesar/Vigenère cipher
4 Variable Caesar cipher
5 Misprint (general, clue order)
6 Delete single occurrence of character
7 Letters latent: delete all occurrences of character
8 Insert single character
9 Custom plug-in

10 Misprint (correct letters specified)
11 Misprint (incorrect letters specified)

The .MESSAGE directive (short form .ME) allows you to set one of the two messages that are
passed to the answer treatment. It is followed by a digit, which must be ‘0’ or ‘1’, and then the
remainder of the line is taken as the message text. So, for example, the directive
.MESSAGE 1 Oh, what a tangled web we weave

would set message 1 to the given text.
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The .MESSAGEALLOCATE directive (short form .MA) allows you to control the discretionary modes
of the filler: see Chapter 6 for more information. It is followed by a digit, which must be ‘0’
or ‘1’, specifying a message number; and then a further digit, which must be ‘0’, ‘1’ or ‘2’, which
specifies the message letter allocation mode according to the following table.

Allocation mode Description
0 in clue order, first come first served (default)
1 in clue order, at discretion of filler
2 in any order, at discretion of filler

The .MESSAGECONSTRAINTS directive (short form .MC) applies constraints to the discretionary
modes of the filler. It is followed by a digit, which must be ‘0’ or ‘1’, specifying a message
number; and then the remainder of the line is taken as the constraint string. See Chapter 6 for
more information.
The .TREATEDANSWERMUSTBEAWORD directive (short form .TW) determines whether the result of
the answer treatment process must appear in the dictionaries selected for the word in question.
It is followed by a single digit, which must be ‘0’ (the default) to allow arbitrary strings as the
result of answer treatment or ‘1’ to restrict to strings that appear in the dictionaries.
The .PLUGIN directive (short form .PI) specifies the filename of a custom answer treatment
plug-in. The text from after the directive to the end of the line is taken as the filename, which
must include the full path to the desired file.

15.3.2 Local directives

The directives described in this section can occur anywhere in a deck. They affect only words
that appear after them in the deck. They correspond to settings available in the Light properties
dialogue (see Chapter 12).
The .USEDICTIONARY directive (short form .UD) gives the list of dictionaries that can be used for
a word. It is followed by a list of dictionary numbers without spaces. So, for example,
.USEDICTIONARY 134

allows dictionaries 1, 3 and 4 to be used for filling subsequent words in the deck. At the begin-
ning of the deck only dictionary 1 is selected.
The .ENTRYMETHOD directive (short form .EM) gives the allowable ‘entry methods’, that is, the
ways that letters from dictionary words can be assigned to entries in a word. It is followed by a
string of characters without spaces specifying entry methods according to the following table.
You can use the letter codes or the symbol codes as you prefer.

Entry method Letter code Symbol code
Normal (forwards) f >

Reversed r <

Cyclically permuted (‘clockwise’) c )

Cyclically permuted and reversed (‘anticlockwise’) a (

Any other permutation (‘jumble’) j @

So, for example,
.ENTRYMETHOD frcaj
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would allow subsequent words to be filled with any permutation of strings from the available
dictionaries; and
.ENTRYMETHOD )(

would allow cyclic permutations and reversed cyclic permutations only. At the beginning of
the deck only normal forwards entry is selected.
The .TREATMENTENABLE directive (short form .TE) enables answer treatment for subsequent
words. Similarly, .TREATMENTDISABLE (short form .TD) disables it. At the beginning of the
deck treatment is enabled, but the default answer treatment is ‘None’ so this has no effect.

15.3.3 Blocks and scope rules

You can further restrict the extent of the effect of a local directive by grouping a set of consecu-
tive words into a ‘block’.
A block begins with an open-brace character (‘{’) on a line on its own, and ends with a matching
close-brace character (‘}’), also on a line on its own. Blocks may be nested within one another,
and you can use indentation to make the block structure clearer if you wish. A local directive
only has force until the end of the block in which it appears, including within any sub-blocks
nested inside. When Qxw reaches the end of a block as it reads in the deck, any parameters
modified by local directives are restored to the values they had at the beginning of that block.
Figure 15.4 shows a more complicated example of a deck. The deck describes a five-by-five
word square where the across words are drawn from an English dictionary while the down
words are drawn from a French dictionary. The central across and down words are entered
reversed, while all other words are entered normally. This is achieved by enclosing the affected
words within a block: the effect of each block is to ensure that each .ENTRYMETHOD directive only
affects one word.

.DICTIONARY 1 mydictionaries/english.txt

.DICTIONARY 2 mydictionaries/french.txt

.USEDICTIONARY 1

00 01 02 03 04

05 06 07 08 09

{
.ENTRYMETHOD <

10 11 12 13 14

}
15 16 17 18 19

20 21 22 23 24

.USEDICTIONARY 2

00 05 10 15 20

01 06 11 16 21

{
.ENTRYMETHOD <

02 07 12 17 22

}
03 08 13 18 23

04 09 14 19 24

Figure 15.4: Deck to generate a mixed-language five-by-five word square
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Keyboard and mouse command
summary

16.1 Keyboard commands

Keystroke Menu item Effect
A...Z, 0...9 enter character in grid

(varies depending on current alphabet)
Space advance cursor one position in

current direction
Backspace retreat cursor one position in

current direction
Home move cursor to start of light
End move cursor to end of light
Tab delete letter from cell and

advance cursor one position
in current direction

Return Edit-Bar before add bar before cursor position in
current direction

Insert, ‘,’ Edit-Solid block add block at cursor position
Delete, ‘.’ Edit-Empty make empty cell at cursor position
PageUp change current direction one step

anticlockwise
PageDown, ‘/’ change current direction one step

clockwise
←,→, ↑, ↓ move cursor left, right, up, down

control-A Autofill-Accept hints accept hints (enter suggested letters
in grey into grid)

control-C Edit-Cutout make cutout in grid
control-D Edit-Free light-

Shorten selected
remove last cell from selected free light

87
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Keystroke Menu item Effect
control-E Edit-Free light-

Extend selected
add cursor position as new cell to
selected free light

control-G (‘go’) Autofill-Autofill run automatic filler
control-I (‘in’) Edit-Cell contents change contents of cell
control-L Edit-Light contents change contents of light
control-M Edit-Merge with next merge current cell with next cell

in current direction
control-N File-New-Current

shape and size
start new grid

control-O File-Open open a previously-saved file
control-Q File-Quit quit program
control-S File-Save save grid
control-X (‘expunge’) Edit-Clear all cells clear all cells
control-Y Edit-Redo redo last undo
control-Z Edit-Undo undo last change
control-Minus Edit-Zoom-Out zoom out
control-1 Edit-Zoom-50% zoom to 50%
control-2 Edit-Zoom-71% zoom to 71%
control-3 Edit-Zoom-100% zoom to 100%
control-4 Edit-Zoom-141% zoom to 141%
control-5 Edit-Zoom-200% zoom to 200%
control-Plus Edit-Zoom-In zoom in

shift-A Select-All select all lights or cells
shift-C Select-Current cell add cell under cursor to selection
shift-F Select-Free light select first or next free light
shift-I Select-Invert invert current selection
shift-L Select-Current light add light going through cursor

in current direction to selection
shift-M Select-Cell mode <>

light mode
switch between selecting
cells and lights

shift-N Select-Nothing reset selection

shift-control-G Autofill-Autofill
selected cells

run automatic filler on selected
cells only

shift-control-X Edit-Clear selected
cells

clear selected cells
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16.2 Mouse commands

Action Effect
left-click on cell edge add/remove bar∗

left-click on cell corner add/remove block∗

left-click on cursor change current direction
other left-click on grid move cursor
left-click in feasible

word list
enter word in grid at cursor position

shift left-click select/deselect cell
left-click and drag,

holding shift
continue selecting/deselecting cells

shift right-click select light in current direction
right-click and drag,

holding shift
continue selecting/deselecting lights in current direction

(not available in all Windows versions)
right-click in feasible

word list
open context menu (banishment, copy to

clipboard, lookups)
scroll wheel scroll grid view
scroll wheel, holding

control
zoom

∗ If function is enabled: see Section 10.1.
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# and @ in letter choices, 56, 67
\# in cell corner mark, 64
\c in cell corner mark, 64
\i in cell corner mark, 64
\o in cell corner mark, 65

accents, 46
acknowledgements, 6
alphabetical jigsaw, 36
alphabets, 54, 83

built-in, 47
names, 54

character ranges, 56, 73
customised, 55

disallowed characters, 55
row editing operations, 56

default, 54, 60
diagnosing problems, 57
equivalent characters, 55
for plug-ins, 41
histogram, 61
letters, digits and symbols, 58, 77
non-default characters, 46

in answer treatments, 48, 75
two-character expansions, 57
vowels and consonants, 56

Ancient Greek (polytonic) alphabet, 47, 54
answer treatment, 27, 28, 70, 84

constraints, 40, 73, 85
dash symbol, 40, 73, 77
full stop symbol, 73
question mark symbol, 73

custom, see plug-ins
delete single character, 72
enabling, 66, 86
force answers to be words, 42, 85
insert single character, 73
message, 28, 39, 84
message letter allocation, 39, 73, 84

ASCII (American Standard Code for Informa-
tion Interchange), 48, 55, 76

awk (command-line utility), 53

banning answers, 13
bars

adding and deleting, 17
batch mode, 80
beheading, 41, 48
blocks

adding, 8
deleting, 9

C (programming language), 41
Caesar cipher, 39, 71
carte blanche, 39
cell contents

constraining, 67
contribution to lights, 24, 32, 65
direct editing, 24, 25, 67
multiple letters, 23

cell properties, 64
checking of lights, 65
circles in background, 65
corner marks, 64

codeword, 64
index in free light, 64
light number, 64

flag to plug-in treatment, 65
foreground and background colours, 64
selected, 24

Character Map (application), 48, 55
character ranges

in answer treatment constraints, 73
checking, under- and over-, 59, 60
cherchez

la femme, 31, 33
la meuf, 33

circles in background, 65
clashes, 31

90
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resolution using free lights, 33
clear all cells, 13
clipboard, 13
code page (Windows character encoding), 54
codewords, 64
command-line invocation, 51, 80
consonants, 56
cursor

changing direction, 8, 22
moving, 8

cutouts, 19
cyclic permutations, 18, 34, 66, 85
Czech alphabet, 47, 54

Danish alphabet, 47, 54
Debian (operating system), 6
decks, 80

answer treatment, 84
answer treatment constraints, 85
answer treatment letter allocation, 84
answer treatment messages, 84
blocks and scope, 86
directives, 83

global, 83
local, 85

entries, 81
initialising, 82

force answers to be words, 85
plug-ins, 85
words, 81

determinism of fill, 60, 84
dictionaries, 83

answer filter, 53, 57, 83
configuring, 51, 85
customising, 52
default, 51, 60
diagnosing problems, 57
file encodings, 53

converting to UTF-8, 54
file filter, 52, 57, 83
handling of accents etc., 51
making using external tools, 53
single-entry, 30, 53, 57
special-purpose, 32
using in combination, 52, 66

digits, 46
discretion, 39, 71–73, 77
DLL (dynamic-linked library), 78
duplicate answers, 60, 84

Dutch alphabet, 47, 54

eightsome reels, 34
entry methods, 18, 30, 37, 66, 85
EPS (Encapsulated PostScript) format, 15
erase, 13
Estonian alphabet, 47, 54
export

customising appearance, 59
for publication, 14
to Crossword Compiler, 15

feasible character list, 12
feasible word list, 12, 66, 68, 74
fill

automatic, 10
deterministic, 60
duplicate answers, 60
random, 60

interactive assistance, 11, 13
manual, 11

finit() function, 74
Finnish alphabet, 47, 54
free light, 28, 68

contribution of cell contents, 69
creating, 29, 68

using external tool, 36, 69
editing, 68
exporting paths, 36, 69
importing paths, 36, 69
modifying path, 69
properties, 30, 69

free light contents
direct editing, 69

French alphabet, 47, 54

GCC (GNU Compiler Collection, 41
German alphabet, 47, 54
gimmicks, 27
GPL (GNU General Public License), 6
grep (command-line utility), 53
grid

barred, 16
blocked, 8, 11
circular, 20, 24
flip in diagonal, 14
from template, 11
hexagonal, 22
non-rectangular, 19
properties, 8, 20, 24
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rectangular, 8
rotate, 14
row and column operations, 14
size, 8
symmetry, 9
topology, 24

hint letters, 10, 12
histogram of alphabet use, 61
hotspots, 12
HTML (Hypertext Markup Language) format,

15
Hungarian alphabet, 47, 54

ICC in function and variable names, 76
iconv (command-line utility), 54
init() function, 74
internal character codes (ICCs), see also alpha-

bets, 48, 57, 76
iota subscript, 57
Isle of Wight, 23
ISO/IEC 8859-1 (character encoding), 53
isword() function, 75

for non-default alphabets, 77
Italian alphabet, 47, 54

jumbles, 18, 37, 66, 85

keyboard command summary, 87
Klein bottle, 24

letters latent, 27, 72
licence, 6
light

annular, 21
maximum length, 31, 60
multiplex, 25, 66
preventing automatic fill, 30
unnumbered, 66

light contents
direct editing, 25, 67

light properties, 21, 25, 64, 65
choosing dictionaries, 30, 33, 35
default, 18
dictionaries, 66
of free light, 30
selected, 28, 29

Linux (operating system kernel), 6, 55, 80
load file, 11
lookup, 13

configuring targets, 60

Möbius strip, 24
merged cells

in circular grid, 20
in rectangular grid, 21

merged group, 21
Microsoft Visual Studio (interactive develop-

ment environment), 78
misprints, 71, 72
Modern Greek (monotonic) alphabet, 47, 54
mouse

adding bars and blocks, 59
command summary, 89

non-interactive use, 80
Norwegian alphabet, 47, 54
Notepad (Windows utility), 53, 54
Notepad++, 54
numbers for lights, 64

displayed while editing, 59
in exported grids, 59

numerical puzzles, 46

open file, 11
overchecking, 59

PCREs (Perl compatible regular expressions),
52

Perl (programming language), 53
Playfair cipher, 70
plug-ins, see also answer treatment, 41, 74, 85

compiling, 41, 74
under Windows, 78

debugging under Windows, 79
using a message, 42
variables available, 74
with discretion, 43, 75, 77

dash symbol, 77
with non-default alphabet, 75

conversions, 77
debugging aids, 77
messages, 76
variables and functions, 76

PNG (Portable Network Graphics) format, 15
Polish alphabet, 47, 54
preferences, 59

location of data file, 60, 80
projective plane, 24
publication, 14
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question mark, 12
in answer treatment constraints, 73

quotation, perimeter, 29
qxwplugin.h header file, 74

randomisation of fill, 60, 84
red dots, 12
redo, 9
return codes, 80
reverse entry, 18, 21, 66, 85
Romanian alphabet, 47, 54
Russian alphabet, 47, 54

save, 14
save file, 11
scroll, 11
selecting, 62

all cells or lights, 33
cells, 24, 62
free lights, 33, 69
incident lights or cells, 63
lights, 28, 63
nothing, 24, 28

Slovenian alphabet, 47, 54
Spanish alphabet, 47, 54
statistics, 60
substitution cipher, 70
SVG (Scalable Vector Graphics) format, 15
Swedish alphabet, 47, 54
SYM and SYT formats, 15
symmetry, 17

topology, 24
torus, 24
treat() function, 41, 74, 76
treatedanswer() function, 74
TSD format, 51

U in function and variable names, 76
uchar type, 76
umlauts, 57
unches, double and triple, 60
underchecking, 59
undo, 9
Unicode, see also alphabets, 55, 57, 58, 76

supported version, 55
URI (Uniform Resource Identifier), 60
UTF-16 (character encoding), 53
UTF-32 (character encoding), 53
UTF-8 (character encoding), 53, 76, 77

variables available to plug-ins, 74
Vigenère cipher, 71
vowels, 56

Windows (operating system), 6, 54, 55, 78, 80

XML (Extensible Markup Language) format,
15

Xubuntu (operating system), 6

zoom, 11
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