
Creating Pictures in LATEX with

METAFONT and METAPOST

Volkmar Liebscher

March 17, 2000

1 Introduction

Because of the defenciencies of PICTEX I got the idea for using METAFONT to
create pictures for use inside TEX or LATEX came to me in the process of making
pictures (i.e. graphics and labels) for geometric proofs. It was to long and boring
for me to calculate all points, angles, functions explicitely by hand or pocket cal-
culator. On the other hand, METAFONT is a useful language to describe (plain)
geometric details, e.g. for the midpoint between to points z1 and z2 use the de-
scription

0.5[z1, z2]

which is both short and handy. Try anything like this in PICTEX! I wanted to
get anything like a logical description of pictures in LATEX to make the line “write
down the logical structure, and LATEX prepares the document” even longer into
graphical structures.

There was even another fact: the slowness of PICTEX. It is so boring to prepare
a document with PICTEX–graphics, that it is almost impossible, if no 486 PC or
faster is required. So the idea was, to let METAFONT(METAPOST) do, what META-
FONT(METAPOST) can best and TEX (LATEX) vice versa. I relied on METAFONT

because METAFONT is well connected to TEX and so there are possibly no big
difficulties in using both of them.

I wanted to try another feature, which is not so good implemented in META-
FONT: graphical representation of 3D–objects. mfpic only provides Kavalier per-
spective, some sort of parallel perspective and a perspective which comes from an
arbitrary view direction, but I think it would be enough.

Last not least, I want to mention another project also named mfpic by Tom
Leathrum (moth@dartmouth.edu\verb), but the version I found on network was
incomplete. May be, we could merge together and create something better.

2 The files.

The docstrip source is found in mppic.dtx. You may run initex on mppic.ins.
There are several files: mppic.sty, containing the LATEX–macros for mppic,

mpbase.mf, containing the METAFONT–macros, mpbase.mp, containing the META-
POST–macros and mpdoc.tex, this file for processing through LATEX. For some
additional advises you can process the file examp.tex, which gives some inside

1

into the utilities of mfpic. mfpic.sty is an obsolete file as the Package was
renamed in version 2.

The Package uses the graphics and the robscan Package, see the respective
.dtx files.

3 Installation and Use

You must have both LATEX and METAFONT (or METAPOST) to use. But it is
enough, to install the plain bases for METAFONT and METAPOST respectively. If
you want to use shading and hatching macros, be sure, that your METAFONT is big
enough. There may be the problem, that some drivers give you memory overflow
errors, if you try to get to large graphics (METAFONT allows only pictures arround
36cm×36cm large (about 14in×14in) at 300dpi). Thus may be, you get problems
at high resolutions. One possibility to get arround this is to split the picture (see
the macro \dividechar).

To process the sample file, first run LATEX on the file jobname.tex. Then
run immediatedly METAFONT in localfont mode on the File mpjobname.mf.
(Run METAPOST on mpjobname.mp. For this You should activate the option mp

by the \usepackage[mp]{mppic} command) On some installations you have to
convert the output .gf file. (on my installation I had to use gftopk.exe). With
option [mfjob] you get jobname.mfj to run through mfjob (may be, you have to
customize the font generation to your favourite printer). By running again LATEX
there should be a file jobname.dvi, which gives you nice graphics output.

These three steps of processing – processing with TEX, processing with META-
FONT/METAPOST, and reprocessing with TEX – may not always be necessary. If you
don’t change the number and the position of pictures (and labels inside pictures),
you can avoid reprocessing with TEX. If don’t change the pictures, you needn’t
run METAFONT again.

There is one source of error to note: If you run LATEX and stop before the
document is complete, then running METAFONT will end in a situation, where
METAFONT wants to input something. Then you have to type bye; and see, what
will happen. It will be good to delete the file mpjobname.log (or some other .log
file, if you changed the name), to avoid failures by TEX if you reprocess after
finding the source of the error. This sort of procedure is recommended in any
situation, where METAFONT gives an error.

4 The structure of mfpic

If you use the package mppic by running LATEX on the file jobname.tex, TEX
constitutes by \write commands the file mpjobname.mf (you may change this
name by a \setmpfontname command). The prefix mp is used for to avoid conflicts
of .log–files. Then you run METAFONT on the file mpjobname.mfwhich will create
mpjobname.log, mpjobname.tfm and mpjobname.300gf or so, depending on your
final device output. The first file is used for communication between TEX and
METAFONT, the second and the third give you the necessary font informations.
After another run of LATEX there will be good jobname.dvi file.

2

5 List of macros and Environments

5.1 Generalities

Our general delimiter is the | symbol, ranges are denoted by a--b. If b is negative,
you have to type three -’s. The single elements of a list are separated by commata.

Optional arguments are included in [and], like in the usual LATEX syntax.

5.2 File handling

\setmpfontname{〈fontname〉}
Redefines the name of the font original beeing mpjobname to mpfontname.

Don’t set {〈fontname〉}=\jobname! If there was even output to a .mf file, all
settings will be choosen so, that upto this moment the old font is required and
from now on the new one is available. But you have to process two (or more) files
through METAFONT.

5.3 Environments

\begin{mfpic}{〈unitlengths〉} [xmin--xmax|ymin--ymax|]
\end{mfpic}

This Environment gives you the opportunity to make all picture building oper-
ations like drawing, filling and erasing. unitlengths stands either for unitlength or
possibly xunitlength—yunitlength, the former is handled like unitlength—unitlength
and the lengths are given like in TEX and LATEX usual (in pt or in or cm or mm

. . .) You may change the bounds afterwards with \bounds.

\begin{3D}{〈unitlengths〉}[xmin--xmax|ymin--ymax|zmin--zmax |]

\end{3D}

The same as \begin{mfpic}, but with three parameters instead of two. Any
description is three dimensional in this environment (see description of commands.)

\begin{object}{〈objectname〉}[〈list of parameters〉]
\end{object}

This defines an object, i.e. a series of picture building commands, under the log-
ical name objectname. You don’t need to be inside a picture. list of parameters is a
list of names such that you can set this parameter by \name{parametersetting}

to be the same as parametersetting (see section about Parameters). These parame-
ters are the only nonnumeric constants you can refer to inside the object. Later on
you can insert this object into any picture with different parametersettings. The
parameters from list of parameters get at the time of use (in the TEX level) their
actual value. Inside an object there are allowed all commands from the mfpic

environment besides that commands, that use the picture bounds.

\begin{rel}

\end{rel}

environments:3D,mfpic,object
Inside this environment you can put down in METAFONT–like syntax relations

between points and paths (the latter only in the environments mfpic and object.
You have to mask logical names declared as points via a points definition (see
macros below) with an @ (and if the name is not a single letter, you have to insert
{ and }). Likewise paths with ?. Inside the \begin{3D} environment you have

3

even to mask explicite points with an @ (unfortunately, but METAFONT is not very
good prepared to handle threedimensional things). You can also use the explicite
\mppoint,\mppath,\tdpoint,\tdpath depending wether you are 2D (mp. . .) or
3D (td. . .).

Relations are given by RHS=LHS, where RHS and LHS are both linear expressions
in explicite and implicite points by using METAFONT syntax (see section below).

By putting down the relation, you must assure, that the values you refer to
are uniquely determined.

Make sure, that you use inside rel no other environment.

\begin{2Dtext}

\end{2Dtext}

environments:mfpic,object
Inside this environment the masking conventions described above are active.

\begin{3Dtext}

\end{3Dtext}

environments:3D
The same, but you have also \xpart,\ypart,\zpart to define something co-

ordinatewise.

5.4 Declarations

Declarations can be made in all environments exept the rel environment.

\points{〈list of points〉}
environments:mfpic,3D,object

Declares some logical synonym for a point, i.e. list of points is a list of names
(consisting of normal characters and digits), divided by commata.

\paths{〈list of paths〉}
environments:mfpic,3D,object

The same as points, but for paths. You may use the same names as for points,
mfpic knows in every situation, if the respective name is a point or a path.

\objects{〈list of objects〉}
The same as \points, but for objects and not necessarily connected to any

environment.

5.5 making points and paths

\point{〈pointname〉}(xvalue,yvalue)
environments:mfpic,object

\point{〈pointname〉}(xvalue,yvalue,zvalue)
environments:3D

Both set the coordinates of a point which is declared under the logical name
pointname. In the xvalue,yvalue,zvalue statements you can use parameters (but be
sure that at the end there is no free parameter, better use the rel environment)
and primitive operations of METAFONT, see below or manuals.

\path{〈pathname〉}{〈list of pointnames〉}
parameters:connectsymbol

4

pathname is a logical name, under which a path is declared. Likewise list
of pointnames contains names of declared points. The parameter connectsymbol
determines the mode of connecting the single points, default is connection by
straight lines (you can set this by \mplinear). Other modes you get by

• \mpquadratic which is the same as \mpcubic, makes a Bezier curve

• \mptense

makes an almost straight curve, which is only rounded at the edges.

• \mpbounded

makes a bounded curve.

If you are familiar with METAFONT you may change the mode of connection by
manipulating connectsymbol directly.

\cycle{〈pathname〉}{〈list of pointnames〉}
parameters:connectsymbol

The same as path, but closes the path to a cycle.

\circle{〈pathname〉}{〈list of circle determining commands〉}
environments:mfpic,object

This makes a circular path (in the length independent coordinatesystem) by
giving three points or the center and one point or the center and the radius. To
this end use

\threepoint{〈3 points〉}
\center{〈1 point〉}
\radius{〈1 real number or parameter〉}
\reverse

reverses the direction of the curve.

\arc{〈pathname〉}{〈list of circular arc determining commands〉}
environments:mfpic,object

This makes a part of a circular path (in the length independent coordinatesys-
tem) by giving three points or the center and one point and an angle or the center
and the radius and one or two angles. To this end use

\threepoint{〈3 points〉}
the first point starts the arc, the second is the center of the respective circle

and the arc stop at the direction of the third point (from the center of the arc)

\center{〈1 point〉}
\radius{〈1 real number or parameter〉}
\arcangle{〈angle in degrees〉}
\startangle{〈angle in degrees〉}

Gives the angle, at which (viewing from the center of the arc) the arc begins.

\reverse

reverses the direction of the curve.

\ellipse{〈pathname〉}{〈list of ellipse determining commands〉}
environments:mfpic,object

This makes an ellipse by giving enough parameters. To this end use

5

\point{〈point〉}
Determines one point through which the ellipse goes.

\center{〈1 point〉}
\focuses{〈pointa〉}{〈pointb〉}

determines the two focuses of the ellipse.

\ratio{〈1 real number or parameter〉}
Determines the ratio between the two halfaxis’.

\halfaxis{〈1 real number or parameter〉}
gives the big halfaxis.

\angle{〈angle in degrees〉}
gives the skew angle of the ellipse, if necessary, the default is 0.

\reverse

reverses the direction of the curve.

\ellipticalarc{〈pathname〉}{〈list of elliptical arc determining commands〉}
environments:mfpic,object

This (equivalently the ellarc) makes a part of an elliptical path by giving
some parameters. To this end use

\point{〈point〉}
determines one point through which the full ellipse goes (not necessary the

arc).

\startpoint{〈point〉}
determines the point where the ellipse starts.

\center{〈1 point〉}
\focuses{〈pointa〉}{〈pointb〉}

determines the two focuses of the ellipse.

\ratio{〈1 real number or parameter〉}
Determines the ratio between the two halfaxis’.

\halfaxis{〈1 real number or parameter〉}
\angle{〈angle in degrees〉}
\arcangle{〈angle in degrees〉}

Gives the length of the arc.

\startangle{〈angle in degrees〉}
Gives the angle, at which (viewing from the center of the ellipse) the arc begins.

\startdirection{〈point〉}
Gives the point, in direction of which (viewing from the center of the ellipse)

the starting point of the arc lies.

\reverse

reverses the direction of the curve.

\makefuncpath{〈path name〉}{〈function〉}:begin point--end point
environments:mfpic,object
parameters:connectsymbol

Makes a path from the graph of function (x is the independent variable).

6

\makeoneparapath{〈path name〉}{〈x description〉}{〈y description〉}(parameter):begin
point--end point

environments:mfpic,object

\makeoneparapath{〈path name〉}{〈x description〉}{〈y description〉}{〈z description〉}(parameter):
begin point--end point

environments:3D
parameters:connectsymbol

The same, but work with an oneparametric description of the curve.

5.6 Transformations

You may want to change the actual transformation, e.g. to scaled or rotate or
shift the output. Anything what follows works only in the mfpic and object

environment.

\trafo{〈transformation〉}
Sets the actual transformation.

\stoptrafo

Makes the current transformation to be the identical transformation.

\rotateby{〈degrees〉}
Rotates around (0,0).

5.7 Drawing and Filling

To every macro listed below there are two more macros: one with *-form, which
works instead of a path name with an explicite list of points representing the
required path. The other macro has the same name and an ending s, this works
with a list of path names. So there are besides \drawpath also \drawpath* and
\drawpaths.

\drawpath{〈pathname〉}
parameters:mplinethickness

Draws the path given by pathname with a pen with thickness mplinethickness.

\drawarrowpath{〈pathname〉}
parameters:arrowangle,arrowlength,arrowratio,mplinethickness,arrowobject

The same a drawpath, but make an arrow at the endpoint in the ending di-
rection.

\drawdoublearrowpath{〈pathname〉}
parameters:arrowangle,arrowlength,arrowratio,mplinethickness,arrowobject

The same a drawarrowpath, but puts an arrow at both endpoints.

\drawdottedpath{〈pathname〉}[〈〉]
environments:object,mfpic,3D
parameters:dotpattern,mplinethickness

Draws a dotted line along the given path, using the optional dotpattern and if
this isn’t valid, the actual dotpattern. The default of dotpattern is simply 10pt,
but you may change it to 2pt,1pt,3pt or similiar (this means draw 2pt, avoid
1pt, draw 3pt, avoid 2pt and so on). It is also possible to use TEX characters for
dotting, for a complete description we refer to the description of the parameter
dotpattern.

7

\overdrawpath{〈pathname〉}
parameters:overdrawratio,mplinethickness

Draws the path given by pathname with a pen with thickness mplinethickness,
but erases anything inside a bundle given by the ratio.

\fillpath{〈pathname〉}
Blackens the region inside the path.

\filldrawpath{〈pathname〉}
Blackens the region inside the path and on the boundary.

\erasepath{〈pathname〉}
Erases anything drawn and filled upto this moment under the path represented

by pathname.

\eraseinsidepath{〈pathname〉}
Erases anything drawn and filled up to this moment under the region inside

the path represented by pathname.

\funcplot{〈description of a function〉}:xmin--xmax
environments:mfpic
parameters:funcplotthickness,functolerance

Draws the graph of the function described (x is used as free variable) between
xmin and xmax with thickness funcplotthickness. functolerance is a length
which determines the distance between two values of the function to be computed.
In description of a function the usual METAFONT syntax is used (see section
below). WARNING:Be careful about not having additional blanks between the
arguments!

\onepara{〈xparttext〉}{〈yparttext〉}(parametername):tmin--tmax
environments:object,mfpic
parameters:funcplotthickness,functolerance

\onepara{〈xparttext〉}{〈yparttext〉}{〈zparttext〉}(parametername):tmin--tmax
environments:3D
parameters:funcplotthickness,functolerance

The same as funcplot, but uses a one parametric description of a path. pa-
rametername gives the name of the parameter. WARNING:Be careful about not
having additional blanks between the arguments!

\twopara{〈xparttext〉}{〈yparttext〉}:umin--umax |ugrid|vmin--vmax|vgrid|
environments:mfpic,object

\twopara{〈xparttext〉}{〈yparttext〉}{〈zparttext〉}:umin--umax |ugrid|vmin--vmax|vgrid|
environments:3D
parameters:funcplotthickness,functolerance

Draws a grid over the plain object given by the twoparametric functional, The
names of the two parameters are u and v. The mesh is given by ugrid and vgrid
which declare the number of curves to draw. WARNING:Be careful about not
having additional blanks between the arguments!

\getobject{〈objectname〉}
environments:object,mfpic,3D

Includes all drawing and filling procedures from the named object.

8

5.8 Shading / Hatching

mfpic provides two kindes of shading: ”shading” and ”hatching”. (My English
isn’t so good to make sure I’m using the names right.) The commands are available
in all environments besides the rel environment. For both the shade and the hatch
macro there is also a * version and a s version

\shadepathpathname(shadedistance,shadethickness, shadeslant)
Shades the inside of the path pathname by lines, which are shadethickness thin,

separated by shadedistance and build an angle of shadeslant against the positive
x-axis.

\hatchpath{〈pathname〉} [〈hatchobjectname,xhatchdistance,yhatchdistance,shadeslant〉]
parameters:hatchobject,xhatchdistance,yhatchdistance,shadeslant

This is more like PICTEX, it fills the region given by the path pathname with
the optional hatchobject. If there is no hatchobject given, it uses that given by
the actual hatchobject which is squarehatch unless changed by a new declaration of
hatchobject. The parameters control the placement of the hatchobject, shadeslant
is the angle between the x axis of the hatch grid (the x axis of the hatchobject is
the same) and the x axis of the coordinate system.

\betweenshade[〈shadedistance,shadethickness,shadeslant〉]
{〈upper function〉}{〈lower function〉}:xmin--xmax

parameters:connectsymbol

Shades the region between the ”lower” and the ”upper” function (their graphs
may cross, see examp.tex between the x-values xmin and xmax. WARNING:Be
careful about not having additional blanks between the arguments!

\betweenhatch[〈hatchobject〉]{〈upper function〉}{〈lower function〉}:xmin--xmax
parameters:connectsymbol,hatchobject

Hatches the region between the lower and the upper function between the x-
values xmin and xmax. WARNING:Be careful about not having additional blanks
between the arguments!

5.9 Saving Pictures

\savepicture{〈picturename〉}
environments:mfpic,3D

Saves the current picture under the logical name picturename. The picture has
all dimensions zero.

\makepicture[〈width,height,depth〉]{〈picturename〉}{〈objectname〉}
environments:not necessary

Makes a picture build from the object objectname available under picturename.
You may specify by width, height, depth the dimensions of the picture.

\getpicture{〈picturename〉}
environments:not necessary

Insert the specified picture into the local context.

9

5.10 Labels

\mpput{〈label〉}¡xshift,yshift¿[〈 orientation〉](point)
environments:mfpic,3D

Puts label at the point with orientation and xshift,yshift are determined like in
PICTEX, i.e. orientation gives the placement of the label. Possible are

• [t]

with the top of the box at the point.

• [b]

with the bottom at the point.

• [B]

with the baseline at the point.

• [l]

with the lefthand margin at the point.

• [r]

with the righthand margin at the point.

Combinations are possible, default is the centered placement of the label at the
point. The label is a horizontal box, if you need more than one line use parbox

or something similiar from standard LATEX. xshift,yshift are two lengths giving
some additional shift besides the values from orientation, which are also optional
(cf. also PICTEX-manual). point is determined by a masked logical name or by
explicite (in METAFONT-syntax) coordinates (without (and)). If you must use
(and) in the syntax, try \(and \) again.

\mpmultiput{〈label〉}<xshift,yshift>[〈 orientation〉]|{〈list of points〉}
environments:mfpic,3D

The same as \mpput, but puts label on each of the determined points. Inside
list of points there is available the macro

\shiftedshift vector\textit{number of points}starting point
which stands for a list of equally distanced points. In the 3D environment you

must use @ for specifying the shift vector and the starting point.

\setput{〈label〉}¡xshift,yshift¿[〈 orientation〉](point)(point1)(point2)
environments:mfpic
parameters:overputsep

Puts the label at the point, but at the same times determines point1 to be be
at the lower left corner of the label and point2 at the upper right corner.

\overput{〈label〉}¡xshift,yshift¿[〈 orientation〉](point)
environments:mfpic,3D
parameters:overputsep

The same as above, but erases anything which was drawn upto this moment
and is placed under the box build by label. This box is thereby enlarged by
overputsep on every side.

10

\multioverput{〈label〉}<xshift,yshift>[〈 orientation〉]{〈list of points〉}
environments:mfpic,3D
parameters:overputsep

Conglomerate of overput and mpmultiput.

\mpangleput[〈minimal radius〉]{〈label〉}{〈point1 〉} {〈point2 〉}{〈point3 〉}
parameters:overputsep,mplinethickness,minangleradius

environments:mfpic,3D
Puts label into a part of a circle (with minimal radius), the center is given by

point2, the fronting arc goes from the direction of point1 to the direction of point3.

\mpperp[〈radius〉]{〈center〉}{〈direction point〉}
parameters:mplinethickness,dotratio,dotthickness

environments:mfpic

\mpperp[〈radius〉]{〈point1 〉}{〈point2 〉}{〈point3 〉}
parameters:mplinethickness,dotratio,dotthickness

environments:3D
Puts a dot with thickness dotthickness inside a quartercircle whith center

or point2 and beginning direction specified by direction point respectively point1
(both are in METAFONT syntax, with masks). The quartercircle is positively
oriented, the distance of the dot from the center is dotratio times radius.

5.11 The Coordinate system

\boundsxmin--xmaxymin--ymax
environments:mfpic

\boundsxmin--xmax|ymin--ymax|zmin--zmax |

environments:3D
In both cases you change the bounds for the picture. This commands effects the

appearance of the picture, as the last valid values for \xmin,\xmax,\ymin,\ymax,\zmin,\zmax
give mfpic that values, to place the picture into the document. The bounds are
also relevant for clipping and dividing the picture.

\xaxis(yval)
environments:mfpic

\xaxis(yval,zval)
environments:3D
parameters:arrowlength,arrowangle,arrowratio,mplinethickness

Draws an arrowed coordinate axis in x-direction, shifted to the value y=\it yval.
Similiarly you have \yaxis,\zaxis

\axises(xval,yval)
environments:mfpic

\axises(xval,yval,zval)
environments:3D
parameters:arrowlength,arrowangle,arrowratio,mplinethickness

Draws all coordinates at onces.

\xticks{〈list of tick commands〉}
parameters:pointstring,mantisse,overputsep,shorttickratio,ticklength

environments:mfpic,3D
Draws the ticks specified by the commands. As commands are possible:

11

\ticksshort,tickslong
Gives short or long ticks.

\numbered[〈length of mantisse〉]
numbers the ticks.

\labeled{〈list of labels〉}
Gives the ticks the specified labels.

\numfunc{〈description of function〉}
Gives the place of the tick, i.e. the tick to number x is to be placed at

function(x).

\logged

Makes a logarithmic scale.

\labelstyle

Gives the style in which to set the labels. It takes one argument containing
the label, i.e. a correct way to redefine it is \labelstyle#1{$#1$} . There is no
need that uch a declaration occurs inside \xticks .

\rangebegin value:step value:end value
Gives the range in which the ticks have to be set, approximately distanced by

step value.

\meshbegin value--end value|number of intervalls|
Between begin value and end value there are placed number of intervalls + 1

ticks equidistantly.

\at{〈list of numbers〉}
Sets ticks at each place corresponding to one number in the list, numbers can

be given in METAFONT syntax.

\shifted{〈shift value〉}
Shifts the ticks to the given value, only in the mfpic environment.

\shifted(shift yvalue,shift zvalue)
Shifts the ticks to the given value, only in the 3D environment.

\left,\up,\right,\down,\centered

Determines the placement of the tick.

\make

Realizes the commands given up to this moment.

\yticks,\zticks
The same as above, but with the y and the z axis.

\mpgridxtimesytimes
environments:mfpic

Makes a grid within the actual bounds. (the times give the number of lines.)

\clip

environments:mfpic,3D
Clips the current picture, i.e. no ink is given points, which lie outside the

current bounds of the picture. (In the environment 3D these are all points, the
picture of which is situated inside the picture of the bounding cube.

\accountingon

Makes any \bounds and \mpput,\mpmultiput,\overput command contribute
to the bounding dimensions of the actual mfpic or 3D environment.

12

\accountingoff

Similiar.

\dividecharxtimesxytimes
If your pictures are too detailed, there would be the necessity to split it into

subpictures, which does this macro. xtimes and ytimes are the division rates.

\kavalierperspective,parallelperspective
environments:3D
parameters:xkavalier,ykavalier

Choose the perspective used to show the 3D–things. In general (if you have
some curved lines like circles) use parallelperspective. There is a default value,
but this is a strange transformation.

\kavalier(xkavalier,ykavalier)
environments:3D

Sets the parameters xkavalier and ykavalier, default is kavalier(0.5cos 45◦,0.5sin 45◦)

\viewperspective

environments:3D
parameters:view

Gives another possible perspective, which arises, if one looks at the 3D picture
from a direction specified by the azimutal and horizontal angle in view.

\view{〈azimutal angle〉}{〈horizontal angle〉}
Specifies the angles for use in viewperspective. The default is set to

view{〈30 〉}{〈-37.5 〉}.

5.12 Parameters

Parameters are values which are important for some METAFONT macros in mfpic.
Suppose you are given a parameter named foo. If you declare this name to be
a parameter, there are two macros: foo and \@foo\verb. The latter stores the
value of the parameter, the former allows you to give this parameter a new value.
Inside METAFONT text you refer to this parameter by foo only.

Parameter–making and changing is not restricted to any environment (but
depends on grouping).

You have the possibility to declare some parameters.

\parameterdef{〈parametername〉}
\parameterdefs{〈list of parameternames〉}

Declares the above macros. There is no initial value!

\pairparameterdef{〈parametername〉}
\pairparameterdefs{〈list of parameternames〉}

Declares the above macros to stand for twodimensional parameters. There is
no initial value!

\lengthdeflengthname

\lengthdefslist of lengthnames
The same as above, but it is assumed, that the parameter declares some

length. To set this parameter, both \foo{10pt} and \foo10pt are allowed
(also \foo{anotherfoo} if another foo is another parameter), but don’t use
the setlength from LATEX!

13

\getparameters{〈list of parameters〉}
Gives METAFONT the currentvalue of the parameters in list of parameters.

\forparameter{〈parametername〉} {〈list of values〉}{〈commands〉}
Executes the commands for several values of one parameter. Inside the envi-

ronments one can even use the syntax from the \begin{rel} environment, see
also the macro \real below.

\forparameters(list of parameters) {〈list of value-vectors〉}{〈commands〉}
The same, but with several parameters. The list is build from entries of the

kind (value1,value2,. . .).

\real{〈value in coordinates〉}
environments:object,2D,3D

Inside the \forparameter, it convertes a coordinate-description into real pa-
rameters

5.13 In Cases of Emergency, Basic Control

\onlyputs

Only put commands are processed. This command should be used if it is not
necessary to execute draw, shade, fill and so on commands.

\putsanddraws

Standard, anything is executed.

\optimize

Optimizes the actual picture a the present state (this can help to deal with
memory overflow).

\mfcmd{〈command text〉}
This macro writes the command text directly to the METAFONT file, using

a TEX write command. This can have some rather bizarre consequences, so
using it is not recommended unless you know, what you do. (Don’t change even
the mpjobname.log file by show commands! If this happens, delete the .log

afterwards).

\mfdrawcmd{〈command text〉}
The same, but depending whether \onlyputs or \putsanddraws are active,

the command text is written into the .mf file.

6 List of current parameters

arrowangle, arrowratio, arrowlength

Three parameters for use in drawing arrows. defaults: 25, 1, 10pt

xmin, ymin, zmin, xmax, ymax, zmax

Give the bounds, default:0.

funcplotthickness, functolerance

The thickness for drawing function graphs and the steplength taken to get the
graph good enough. Default values 0.4pt and 10pt.

mplinethickness

Thickness of normal lines, default 0.4pt.

14

dotpattern

This is much more complex. In general, dotpattern is a list and each entry is
one of the following

• a length A piece of the given length is drawn (or not drawn, if the number
of the piece is even) with the actual pen.

• \dotsymbol{〈{〈symbol text〉}[〈symbol placement〉] 〉}
Instead of drawing a symbol is put into the middle of the specified piece (not
depending on the number of the piece, according to the placement specifiers,
see the macros \mpput,\mpmultiput). To change the original measures of
the symbol just follow the command (before the next colon) by another
length which replaces the standard

√
h2 + w2, h and w being height and

width.

• \dotdirsymbol{〈symbol text〉}
The same, but the standard length is not

√
h2 + w2 but depends from the

direction. For changing the immanent measures of the symbol just specify
another height and width by a following (h\string\,w).

• \dotobject{〈{〈objectname〉}length,〉}

• \dotdirobject{〈{〈objectname〉}(height width),〉}
The same, but uses an object. You must specify some measures!

• parameters

Every entry can begin with some parameter settings which are valid from
this moment.

The default dotpattern is simply 10pt, which means that the path is divided into
pieces of length 10pt which are drawn and not drawn consequitively.

shadeslant

Given in degrees, it determines the angle, by which you have to rotate the
shading lines or the hatchobject inside shading or hatching. Its default value is 0.

shadedistance

Determines the distance between the shading lines for shading. Its default
value is 10pt.

shadethickness

Determines the thickness of the shading lines for shading. Its default value is
0.4pt.

xhatchdistance, yhatchdistance

Distances, by which the hatchobjects have to be separated. Default 1pt.

hatchlength

Parameter to determine the length of little symbols (dots) in the \squarehatch
and \circlehatch object. Default 0.25pt.

hatchthickness

The thickness with which the draw commands in hatchobjects are working.
Default 0.2pt.

15

hatchobject

The actual default hatchobject, default is squarehatch. From the beginning
there are available the following hatchobjects:

xhatch

crosshatch

fullcirclehatch

circlehatch

squarehatch

These can be made default by the macro with the same name. But you may also
specify another hatchobject of your choice, if you have built one.

arrowobject

This gives the object which is drawn if an arrow should be drawn, e.g. for
making some axises. There are two objects built in:

fullarrow

openarrow

Both can be activated by fullarrows or openarrows but the user is free to use
any other object defined by him.

objecttransform

Gives the transformation, which applies to the objects included afterwards.

xkavalier,ykavalier

Set the ratios for the z-axis in both the kavalier and the parallel perspective,
i.e. the point (0, 0, 1) is mapped onto (xkavalier, ykavalier).

overputsep

Gives the amount of space added to a label on each side, if the part of the
picture under the label is erased by an overput command. Also used for the
additional distance between ticks and labels. Default: 1pt.

pointsymbol

Symbol between integer and rational part of labels for ticks, default is ..

mantisse

Default value of length of mantissa by labeling ticks, originally set to 1.

ticklength

Length of long ticks, default 10pt.

shorttickratio

Ratio by which the tick is shortened in short ticks, default 1/2.

dotratio

Ratio between radius of the quartercircle and the distance of the dot from the
center of the quartercircle in mpperp, default 1/2.

dotthickness

Thickness of the dot in the same macro, default 2pt.

minangleradius

Minimal radius of arcs used by \mpangleput and \mpperp.

16

7 METAFONT syntax, which can be freely used

Inside the \begin{rel}\end{rel} environment (and the arguments of the com-
mands \point,\mpput,\mpmultiput,\overput and the stared drawing macros
you can use all the syntax, METAFONT allows for simple equations or declara-
tions. E.g. the = denote equality, := an assignment. All names used denote
real quantities, unless stated otherwise (do declare a 2dimensional vector zz use
pair zz;). All statements have to be separated by semicolons. A short descrip-
tion for the point dividing the line between the points (or numbers) z1 and z2

in the ratio q:(1-q) is q[z1,z2] (it is also possible to have q < 0 or q > 1).
METAFONT allows the parameter whatever to denote an arbitrary real quantity.
So whatever[z1,z2] is an arbitrary point on the straight line through z1 and
z2. There are the following functions available: sin,cos,tan,exp,log,abs (also
for complex numbers = plain vectors) sqrt,*,**,/,+,-. METAFONT gives you
also sind,cosd, which work with arguments in degrees, and mexp and mlog, given
by mlog(x) = 256 ∗ log(x) and mexp(x) = 256 ∗ exp(x/256). Also, grouping is
made by (and), inside the put commands and point commands \(and \) are
required. You can use this syntax wherever parametervalues are required, but it
doesn’t work with lengths. For a deeper description of the METAFONT syntax we
refer to the METAFONT book by Donald E. Knuth.

Warning: METAFONT has a largest value of 4096, thus you should be sure,
that your expressions lead not to such large numbers.

8 Further Plans

It would be preferable, if there is a plain TEX version, but it would be to puzzling
in the moment to copy the respective hacks from the latex.tex file into some file
named mfpic.tex to be inputted into TEX. It is also nice to have additionally an
.aux file, such that there is no problem in finishing the output. But this is not a
big problem besides time.

Further, it would be good to expand the 3D–part, especially introducing 3D–
objects.

It seems to be possible to extend shading even to the case, where the user gives
a TEX box, the material inside which should fill the region. But at the moment I
think a usergiven object would be enough.

9 Communication

Because of lack of time, the author couldn’t test all macros as deep as he liked
to. Thus he would like to hear, how this styles works and what has to be made
better. Please contact to Volkmar Liebscher (liebsche@gsf.de)

10 Acknowledgement

I like to thank D. Kaiser for some advisement in the algorithm for drawing dotted
curved lines. One further thank yields M. Malarski for finding the other mfpic

project at network. I’m very grateful towards F. Ditrich, Th. Fischer, G. Richter,

17

G. Schmidl, N. Zeh and K.Basler, who standed the uncountably many errors in
former versions of this style.

18

